
and of some conducting polymers. These
findings open up tremendous possibilities for
exploiting the highly designable visible and
infrared optical properties of quantum dots of
various shapes and compositions, along with
the useful conductivity.
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Influence of Satellite Data
Uncertainties on the Detection of
Externally Forced Climate Change
B. D. Santer,1* T. M. L. Wigley,2 G. A. Meehl,2 M. F. Wehner,3

C. Mears,4 M. Schabel,4 F. J. Wentz,4 C. Ammann,2 J. Arblaster,2

T. Bettge,2 W. M. Washington,2 K. E. Taylor,1 J. S. Boyle,1

W. Brüggemann,5 C. Doutriaux1

Two independent analyses of the same satellite-based radiative emissions data
yield tropospheric temperature trends that differ by 0.1°C per decade over 1979
to 2001. The troposphere warms appreciably in one satellite data set, while the
other data set shows little overall change. These satellite data uncertainties are
important in studies seeking to identify human effects on climate. A model-
predicted “fingerprint” of combined anthropogenic and natural effects is sta-
tistically detectable only in the satellite data set with a warming troposphere.
Our findings show that claimed inconsistencies between model predictions and
satellite tropospheric temperature data (and between the latter and surface
data) may be an artifact of data uncertainties.

Since 1979, atmospheric microwave emis-
sions have been monitored by the Microwave
Sounding Unit (MSU) flown on polar-orbit-
ing satellites (1). Satellite temperature mea-
surements are mass-weighted averages of the
microwave emissions from broad atmospher-
ic layers (2). In the mid to upper troposphere,
these emissions are monitored by MSU chan-
nel 2 (“T2”). Emissions from the stratosphere

are tracked by MSU channel 4 (“T4”).
The MSU record currently comprises

measurements from 12 different satellites.
Producing homogenous data sets requires ac-
counting for such effects as intersatellite bi-
ases, uncertainties in instrument calibration
coefficients, changes in instrument body tem-
perature, drift in sampling of the diurnal cy-
cle, roll biases, and decay of orbital altitude
(2–6). Until recently, only one group (from
the University of Alabama at Huntsville;
hereafter, “UAH”) had generated temperature
records from the raw MSU radiative emis-
sions data (1, 2). On the basis of these
records, it has been argued that the tropo-
sphere has not warmed over the satellite era,
thus casting doubt on the usefulness of cli-
mate models (which predict that anthropo-
genic warming should have occurred), the

reliability of thermometer-based observations
of surface warming, and the reality of human-
induced climate change (7).

A second group (Remote Sensing Systems
in Santa Rosa, California; “RSS”) has now
constructed T2 and T4 temperature data sets
from the same raw radiative emissions used
by UAH (Fig. 1). Over 1979 to 2001, the
global mean T2 temperatures estimated by
the RSS group warm by roughly 0.1°C/
decade relative to the corresponding UAH
data, which show little net change (6).

Our goal was to explore the effects of this
observational uncertainty on climate change
detection results. We compared T2 and T4
temperatures from UAH and RSS with sim-
ulated MSU temperatures (8) from a climate
change experiment performed with a state-of-
the-art coupled atmosphere-ocean model, the
Department of Energy Parallel Climate Mod-
el (PCM) developed by the National Center
for Atmospheric Research and Los Alamos
National Laboratory (9). The PCM experi-
ment (“ALL”) involves combined changes in
well-mixed greenhouse gases, tropospheric
and stratospheric ozone, the direct scattering
radiative effects of sulfate and volcanic aero-
sols, and solar irradiance (10, 11). Four real-
izations of ALL were performed, each with
identical forcing but commencing from dif-
ferent initial conditions of the PCM control
run. The experiments start in January 1890
and finish in December 1999.

We first show comparisons of global
mean changes in ALL and observations. Both
modeled and observed T4 data exhibit a mul-
tidecadal cooling trend (Fig. 1A), which is
primarily attributable to stratospheric ozone
depletion and to increases in well-mixed
greenhouse gases (12–14). Only the RSS T4
trend of �0.44 � 0.46°C/decade (the 95%
confidence interval) is significantly different
from zero at the 10% level (15–17) (Fig. 2A).
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Superimposed on this overall cooling are the
stratospheric warming signatures of the El
Chichón and Pinatubo volcanic eruptions,
caused by increased absorption of incoming
solar radiation and upwelling terrestrial infra-
red radiation by volcanic aerosols (13, 14).
Like other models, PCM overestimates this
warming (18), largely due to coarse vertical
resolution in the stratosphere.

The observed T2 data are characterized
by large El Niño events in 1982– 83 and
1997–98 (Fig. 1B). Fortuitously, one of the
PCM realizations has an El Niño in 1996
with an amplitude comparable to that of the
observed 1997–98 event (19). This is con-
sistent with PCM’s ability to simulate many
of the statistical characteristics of El Niño–
induced temperature variability (20). An-
other prominent feature of the observed T2
data is the cooling induced by Pinatubo.
PCM’s tropospheric temperature response
to Pinatubo successfully captures the peak
cooling, the time to reach this cooling, and
the gradual recovery to pre-eruption tem-
perature levels (21). Although the T2 cool-
ing in response to El Chichón is clearly
evident in PCM, it is masked in the obser-
vations by the 1982– 83 El Niño (19).

RSS tropospheric temperatures warm by
0.10 � 0.11°C/decade over 1979 to 1999,
whereas the UAH T2 trend is close to zero
(0.01 � 0.11°C/decade) (Fig. 2B). T2 trends
in the four ALL realizations lie within this
observational range (22). If temporal autocor-
relation effects are accounted for (16), only
the RSS T2 trend is significantly different
from zero at the 10% level (23). Different test
outcomes are obtained if autocorrelation ef-
fects are neglected (fig. S1B). This highlights
the importance of properly accounting for
temporal autocorrelation in assessing the sig-
nificance of individual trends and model-data
trend consistency (15, 16).

We next investigated whether observa-
tional uncertainty influences the outcome of
model-data consistency tests that rely on full
patterns of temperature change. We used a
standard “fingerprinting” technique (24, 25).
The fingerprint

3

f is assumed to be the first
Empirical Orthogonal Function (EOF) of the
ALL ensemble mean, and therefore repre-
sents the expected climate change signal in
response to a suite of anthropogenic and nat-
ural forcings. Fingerprint detection requires
estimates of the internally generated climate
noise for assessing statistical significance.
Here, we obtained noise estimates from 300-
year control runs (with no external forcings)
performed with two models: PCM, and the
ECHAM4/OPYC model (“ECHAM”) of the
Max-Planck Institute for Meteorology in
Hamburg (26).

Our strategy was to search for an increas-
ing expression of

3

f in the UAH and RSS data
and to estimate the “detection time”—the

time at which the fingerprint becomes con-
sistently identifiable at a stipulated 5% sig-
nificance level. We tried to enhance the de-
tectability of

3

f by rotating the fingerprint
away from high noise components, yielding
the optimized fingerprint

3

f *. Given the short
observational record lengths, we used only
the spatial properties of signal and noise in
rotating

3

f. Other detection efforts involving
longer data sets with more temporal structure
have employed both spatial and temporal in-
formation for fingerprint optimization (27,
28).

For surface temperature, several studies
have identified an anthropogenic fingerprint
even after removal of global mean changes
(29, 30). Such “mean-removed” model-data
pattern comparisons, which focus on subglo-
bal spatial scales, provide more compelling
statistical evidence of fingerprint detection
than global mean agreement alone. We ad-
dress this issue by performing our detection
analysis both with and without the global
mean changes in T2 and T4 temperatures.
The “mean-included” fingerprints have uni-

form sign and pronounced zonal structures.
For T4, the externally forced signal is largest
poleward of 60°S (Fig. 3A). Highest loadings
for the T2 fingerprint are in the tropics (Fig.
3C). Removal of the spatial means emphasiz-
es the strong equator-to-pole gradients and
zonal structure in both the T4 and T2 finger-
prints (Fig. 3, B and D).

Detection times are shown in Fig. 4. For
each variable (T2 or T4), there are eight
mean-included and eight mean-removed cas-
es. Each group of eight is comprised of four
nonoptimized (RAW) and four optimized
(OPT) results. We considered the T4 detec-
tion times first. Without optimization, the
mean-included fingerprint is identifiable in
both observational data sets in 1988, only 10
years after the start of the satellite record
(Fig. 4A). This early detection arises from
increasing similarity between the fingerprint
and the spatially coherent pattern of strato-
spheric cooling common to UAH and RSS
(Fig. 3A and Fig. 5, A and C). Such increases
in pattern similarity cannot be obtained using
simulated natural internal variability alone.
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Positive detection of the nonoptimized T4
fingerprint is not driven solely by global
mean behavior. Removal of spatial mean
changes still yields a detectable RAW finger-
print, but only toward the end of the record
(between 1997 and 2001) (Fig. 4A). In this
case, detection is due to model-data similar-
ities in both the equator-to-pole temperature
gradient and the hemispheric asymmetry of
stratospheric temperature changes. In terms
of the latter, both the RAW T4 fingerprint
and the UAH and RSS data have larger high-
latitude cooling in the Southern Hemisphere
than in the Northern Hemisphere (Fig. 3B
and Fig. 5, A and C). Systematic differences
in the latitudinal structure of the observed
cooling (Fig. 5E) probably explain why the
RAW mean-removed fingerprint has slightly
different detection times in the RSS and UAH
data.

In our approach, 1988 is the earliest time
at which fingerprint detection can occur. Be-
cause the RAW mean-included T4 fingerprint
is already detectable in 1988, optimization
of

3

f cannot improve this result (Fig. 4A).
When the spatial mean is removed, however,
optimization markedly advances RAW detec-
tion times. For example, optimization trans-
forms “late” detection of

3

f (between 1997 and
2001) to “early” detection of

3

f * (in 1988).
The detectability of tropospheric temper-

ature change fingerprints shows greater de-
pendence on the choice of observational data
set. In the mean-included case, the RAW and
OPT T2 fingerprints are consistently identi-

fiable in RSS data, but not in UAH (Fig. 4B).
This difference in detectability is primarily
due to RSS-UAH differences in global mean
trends (Fig. 2B). In contrast, the mean-
removed T2 fingerprint is detectable at the
5% level in both observational data sets (in 6
of 8 cases) (Fig. 4B). This result reflects the
pronounced equator-to-pole temperature gra-
dients common to

3

f and the observations (Fig.
3D and Fig. 5, B and D). These gradients are
preserved after removal of spatial means. As
for T4, latitudinal differences in the two ob-
served data sets (Fig. 5F) lead to slightly
different mean-removed detection times.
Both T4 and T2 results show some sensitivity
to the choice of noise data, with detection
often achieved later if ECHAM noise is used
for testing statistical significance.

The satellite data uncertainties presented
here arise from different processing choices
made by the UAH and RSS groups. For T2
data, UAH-RSS discrepancies are primarily
related to how the two groups deal with the
“instrument body effect” (IBE), and how they
account for satellite drift in sampling the
diurnal temperature cycle. The IBE arises
from correlations between the MSU-mea-
sured brightness temperature and the temper-
ature of the hot calibration target for the MSU
instrument (2, 6). A “target factor” quantifies
this correlation. RSS and UAH arrive at dif-
ferent estimates of this factor, particularly for
channel 2 of the MSU instrument on the
NOAA-9 satellite. In this case, the UAH-
estimated target factor is substantially larger

than the RSS target factor and the target
factors of any other MSU instruments or
channels (6).

Our analysis shows that PCM’s T2 chang-
es are generally in better agreement with RSS
than with UAH. Other models yield qualita-
tively similar results. Though simulated T2
changes in climate models run with similar
forcings are larger than in PCM or either
observational data set, they are still closer to
RSS than to UAH (14, 31). We cannot use
model-data comparisons alone, however, to
determine which of the two satellite data sets
is closer to reality. One reason for this is that
the estimated historical forcing used in cli-
mate model experiments does not include all
possible anthropogenic influences (32). A
key forcing neglected in the present work, for
example, is that arising from indirect aerosol
effects. Repetition of our detection study with
ECHAM fingerprints that include this forcing
does not alter the primary conclusions of this
paper (33).

Consistency with observed surface tem-
perature changes is another factor that may
be useful in evaluating the reliability of the
RSS and UAH MSU data. Observations of
a strongly warming surface are in better
accord with T2 changes in RSS than in
UAH (21). Comparisons with surface data
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must be treated cautiously, in part because
T2 has a small (roughly 10%) contribution
from the cooling stratosphere. Radiosonde
temperature measurements afford another
means of judging the quality of satellite
data (2, 3). As with MSU data, however,
there is evidence that the choice of the
“adjustment pathway” for radiosonde data
markedly influences the size and even the
sign of the estimated global-scale trend
(34 ). Furthermore, many of the largest dif-
ferences between RSS and UAH T2 trends
are in areas where radiosonde coverage is
sparse.

Although the RSS T2 data are more
consistent with both model results and sur-
face observations, we cannot say definitive-
ly whether RSS or UAH provides a better
estimate of the “true” tropospheric temper-
ature changes. This dilemma may be re-

solved by analysis of complementary data
sets, such as tropopause height, water va-
por, and sea-surface temperature (SST) (18,
35). Better characterization of the diurnal
cycle in satellite data correction procedures
would also help to reduce UAH-RSS
differences.

In summary, we note two important
points. First, claimed inconsistencies be-
tween satellite estimates of tropospheric
temperature changes and either model re-
sults or surface temperature trends depend
critically on which satellite data set is used.
These inconsistencies are minimized with
the RSS data. Second, our identification of
a model-predicted stratospheric tempera-
ture fingerprint is robust to satellite data
uncertainties. Taken together, these points
strengthen the case for a pronounced hu-
man influence on global climate (36 ).

References and Notes
1. R. W. Spencer, J. R. Christy, J. Clim. 5, 847 (1992).
2. J. R. Christy, R. W. Spencer, W. D. Braswell, J. Atmos.

Ocean. Tech. 17, 1153 (2000).
3. J. M. Wallace et al., Reconciling Observations of Glob-

al Temperature Change (National Academy Press,
Washington, DC, 2000).

4. F. J. Wentz, M. Schabel, Nature 394, 661 (1998).
5. J. W. Hurrell, K. E. Trenberth, Nature 386, 164 (1997).
6. C. A. Mears, M. C. Schabel, F. W. Wentz, in preparation.
7. S. F. Singer, EOS 80, 183 (1999).
8. B. D. Santer et al., J. Geophys. Res. 104, 6305 (1999).
9. W. M. Washington et al., Clim. Dyn. 16, 755 (2000).
10. C. Ammann, G. A. Meehl, W. M. Washington, C.

Zender, Geophys. Res. Lett. 30, doi: 10.1029/
2003GL016875RR.

11. G. A. Meehl, W. M. Washington, T. M. L. Wigley, J. M.
Arblaster, A. Dai, J. Clim., 16, 426 (2003).

12. V. Ramaswamy, M. D. Schwarzkopf, W. Randel,
Nature 382, 616 (1996).

13. V. Ramaswamy et al., Rev. Geophys. 39, 71 (2001).
14. J. E. Hansen et al., J. Geophys. Res. 107, doi: 10.1029/

2001JD001143 (2002).
15. B. D. Santer et al., J. Geophys. Res. 105, 7337 (2000).
16. These are the “adjusted” 95% confidence intervals

for b, the slope parameter of the estimated least-
squares linear trend (15). Our adjustment procedure
assumes a lag-1 temporal autocorrelation structure
of the trend residuals, e(t). The lag-1 autocorrelation
coefficient of e(t) is used to compute an effective
sample size, ne, and to adjust sb, the standard error of
b. Strong temporal autocorrelation of e(t) results in
ne �� n (the actual number of time samples) and
inflates sb. Tests of the significance of b involve the
ratio b/sb, which is assumed to be distributed as
Student’s t. Some studies have assumed (incorrectly)
that values of e(t) are statistically independent, thus
biasing estimates of sb and trend significance. We
show both adjusted and unadjusted results (Fig. 2
and fig. S1, respectively) to illustrate the dependence
of trend significance estimates on test assumptions.
All significance estimates involve a conservative two-
tailed Student’s t test of the null hypothesis that b is
not significantly different from zero. For adjusted
results, ne is used for calculating sb and determining
the critical t value. Unadjusted results use n instead
of ne.

17. For T4, adjusted confidence intervals are much small-
er in observations than in the four ALL realizations
(Fig. 2A), primarily due to PCM’s overestimate of the
stratospheric temperature responses to El Chichón
and Pinatubo (Fig. 1A). Note that ensemble averaging
reduces internally generated noise and increases the
autocorrelation of trend residuals. This is why adjust-
ed confidence intervals in the “ALL MEAN” case are
not smaller than in individual ALL realizations (Fig.
2A).

18. B. D. Santer et al., J. Geophys. Res. 108, doi: 10.1029/
2002JD002258 (2003).

19. The precise timing of El Niño and La Niña events (and
hence of their effects on tropospheric temperatures)
is not the same in the PCM simulations and in the
real world. Similar timing of modeled and observed El
Niño variability occurs in integrations with an atmo-
spheric general circulation model (GCM) driven by
observed changes in SST (21). Such similarities do not
occur (except by chance) in a coupled atmosphere-
ocean GCM like PCM.

20. G. A. Meehl et al., Clim. Dyn. 17, 515 (2001).
21. B. D. Santer et al., J. Geophys. Res. 106, 28033

(2001).
22. The fact that the PCM T2 results fall within the UAH

and RSS range is unlikely to be due to compensating
errors in PCM, such as excessive stratospheric cooling
offsetting unrealistically large upper tropospheric
warming. PCM’s stratospheric cooling is smaller than in
either UAH or RSS, which rules out error compensation
(at least at the global mean level) as a plausible
explanation for model-data trend correspondence.

23. None of the model trends is significantly different
from the observed T2 trends (at the 10% level or
better).

24. K. Hasselmann, in Meteorology of Tropical Oceans,

UAH linear trend (T4)

RSS linear trend (T4) RSS linear trend (T2)

UAH linear trend (T2)A

C

B

D

Linear trend over 1979 to 2001 (°C/decade)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 -0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 -0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

F    Trend difference, UAH minus RSS (T2)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

E     Trend difference, UAH minus RSS (T4) 

Fig. 5. Linear trends (16) over January 1979 to December 2001 in the UAH and RSS T4 and T2 data,
computed from anomalies defined relative to overall climatological monthly means. T4 results for
UAH and RSS are in (A) and (B); T2 results for the same are in (C) and (D), respectively. The spatial
patterns of differences between the UAH and RSS trend fields are given in (E) and (F) for the T4
and T2 data, respectively.
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A Modular PIP2 Binding Site as a
Determinant of Capsaicin

Receptor Sensitivity
Elizabeth D. Prescott and David Julius*

The capsaicin receptor ( TRPV1), a heat-activated ion channel of the pain
pathway, is sensitized by phosphatidylinositol-4,5-bisphosphate (PIP2) hydro-
lysis after phospholipase C activation. We identify a site within the C-terminal
domain of TRPV1 that is required for PIP2-mediated inhibition of channel gating.
Mutations that weaken PIP2-TRPV1 interaction reduce thresholds for chemical
or thermal stimuli, whereas TRPV1 channels in which this region is replacedwith
a lipid-binding domain fromPIP2-activated potassium channels remain inhibited
by PIP2. The PIP2-interaction domain therefore serves as a critical determinant
of thermal threshold and dynamic sensitivity range, tuning TRPV1, and thus the
sensory neuron, to appropriately detect heat under normal or pathophysio-
logical conditions.

Charged membrane phospholipids are thought
to regulate a variety of ion channels and trans-
porters (1). For example, recent electrophysio-
logical studies suggest a role for the membrane
phospholipid PIP2 as a modulator of transient
receptor potential (TRP) channels, many of
which contribute to the detection of sensory
stimuli. TRP channels in the Drosophila eye (2)
and TRPV1 channels in the mammalian pain
pathway (3, 4) are activated or potentiated
when PIP2 is hydrolyzed, whereas the ubiqui-
tously expressed mammalian TRPM7 channel
is inhibited by PIP2 cleavage (5). Phospholipase
C (PLC) catalyzes the hydrolysis of PIP2 to
inositol trisphosphate (IP3) and diacylglycerol
(DAG) and has been implicated in the release

of TRPV1 from PIP2-mediated inhibition (3),
although the underlying mechanism for such
regulation has not been elucidated. Despite
functional evidence that TRP channels are di-
rectly regulated by PIP2, there is now no struc-
tural basis to account for this effect. TRPV1 is
an especially tractable model for addressing this
question, because it can be directly gated by a
number of stimuli, including the pungent va-
nilloid compound capsaicin, extracellular
protons (pH � 6.0), or noxious heat (�43°C)
(6, 7). Moreover, genetic studies have shown
that TRPV1 is an essential component of the
signaling pathway through which PLC-cou-
pled receptors increase behavioral sensitivity
to heat (3, 8, 9), which makes elucidation of
this regulatory pathway of physiological
interest.

To investigate the molecular basis of PIP2-
dependent regulation, we determined which re-
gions of TRPV1 were required for PLC-medi-
ated potentiation. We reasoned that mutations

affecting such domains should render TRPV1
insensitive to PIP2 inhibition, and therefore, we
identified mutants exhibiting increased respons-
es to capsaicin or extracellular protons. A
TRPV1 mutant lacking a segment of the C-
terminal cytoplasmic domain (TRPV1 �777–
820) produced much larger currents than wild-
type channels in response to low doses of cap-
saicin (250 nM) or protons (pH 5.5), when
expressed in Xenopus oocytes (Fig. 1). These
enhanced currents could not be attributed to
increased cell surface expression, because bioti-
nylation experiments revealed equivalent levels
of the mutant and wild-type TRPV1 at the
plasma membrane (fig. S1). To determine
whether amino acids 777 to 820 were also
required for PLC-mediated potentiation, we ex-
posed oocytes expressing TRPV1 channels and
the nerve growth factor (NGF) receptor TrkA/
p75 to NGF, a treatment that normally elicits a
robust potentiation wild-type TRPV (	20-fold)
of responses through activation of PLC-
 (3).
Currents from TRPV1�777–820 were un-
changed, which suggests that these residues are
critical for mediating potentiation downstream
of PLC-coupled receptor stimulation. More-
over, potentiation of TRPV1�777–820 was not
observed when other PLC-coupled receptors
were activated, including the epidermal growth
factor receptor (EGFR) and the G protein–cou-
pled m1 muscarinic acetylcholine receptor (10).
Loss of potentiation was not simply due to
increased agonist sensitivity of the mutant
channel, because the response to either a low
dose of capsaicin (100 nM) or protons
(pH 6.1) was unchanged after PLC activation
(10). In addition, the thermal threshold of
TRPV1�777–820 was markedly shifted to
lower temperatures, and the overall currents
were larger than those of wild-type channels
(Fig. 1D), a phenotype reminiscent of wild-type
channels that have been potentiated by PLC-
coupled receptor activation (3).
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