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Tracer conservation and ocean transport

The tracer conservation equation describes

the time rate of change of a tracer at a given
point and the processes that change its
concentration

The processes include

1. transport and mixing — physical (decrease
vertical contrast)
2. sources and sinks — biological and chemical

transformations (increase nutrient concentrations in
deep waters)



The tracer conservation eq. for a volume at a fixed

location is

C 9C oC

= +— + SMS(C)
ot ot advection ot diffusion

where SMS(C) (mmol m=3 s-1) represents internal
sources minus sinks
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Advection

The large-scale, depth integrated ocean
circulation:

m The Meridional Overturning Circulation (MOC) or
Thermohaline circulation

m [he wind-drive gyre circulation




"
The MOC (or thermohaline circulation)

m The meridional overturning circulation is associated to
the abyssal circulation in the ocean. In reality is not
Independent on the wind circulation, but a representation
of it can be obtained considering buoyancy effects alone

m [t is also called thermohaline circulation because is
driven principally —not exclusively- by temperature and
salinity

m A satisfactory theory explaining the MOC is not available.
Simple models lack important components and are not
as complete and ‘clear’ as the one describing the wind-
driven circulation



(From Siedler, 2001, figure 1.2.7, as taken from Schmitz, 1996)
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The MOC




Antarctic Bottom Water (AABW)

m When sea ice freezes, it leaves salt behind
m Adds salt to coldest water on earth around Antarctica
m Becomes the densest water in the ocean and sinks
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Formation of Antarctic Bottom Waters
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Ross Sea image from
MODIS (from Kwot et al., 2007)



Spread of the AABW

Arctic Deep Water

------- 4000 m depth contour Antarctic Bottom Water
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m Most of the stratification is concentrated in the first upper
kilometer

m The relatively unstratified abyss water originates at high
latitudes (the outcropping happens only in the North
Atlantic subpolar gyre and in the Antarctic Circumpolar
Current (ACC))
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MOC plays a key role in
m transporting nutrients
m modulating biological productivity

m Broad nutrient distributions reflects
temperature but with greater basin-to-

basin and vertical contrasts (iron is an
exception)



Associated with the MOC there is a distinctive stratification.
m  Most of stratification is concentrated in the first upper kilometer

m The relatively unstratified abyss water originates at high latitudes

(with outcropping only in the North Atlantic subpolar gyre and in the
Antarctic Circumpolar Current - ACC)
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Potential temperature
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Temperature at 30W
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North-south sections of (a) temperature, (b) salinity, and (c) oxygen along the 30°W
transect in the Atlantic ocean. Note the salinity tongues indicating the interleaving of
water masses from sources in the Antarctic and the North Atlantic.



Map of salinity at 25W in the NA showing salinity maximum of MOW
(30-40N at 1000m), salinity minimum of LSW (40-60N at 1500-2000m).
Also - salinity minimum of AAIW (south of 20N at 500-1000m) and
overall salinity maximum of NADW (south of 20N and 1500-3000m)
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Meridional WOCE sections

of nitrate (colour shading in
pmol kg-') and potential tem-
perature (contours in °C) for
a Atlantic (A16) and b Pacific
(P15). In the Atlantic, there
are signals of a southwards
spreading of North Atlantic
Deep Water (green), as well as
norglwa:ds sgzzading of Ant-
arctic Intermediate Water and
Antarctic Bottom Water (up-
per and lower orange plumes).
In the Pacific, there is a north-
wards influx of bottom and
deep water from the Southern N L
Ocean, which is probably N
returned southwards at mid- My ey
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The Southern Ocean (SO) plays a key role in the
nutrient supply to the thermocline

The Subantarctic Mode Water (SAWM) represents the
main conduit of nutrients from the SO
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Schematic showing SO
control on thermocline
nutrient concentrations from
Sarmiento et al., 2004

Top: water pathways.
Bottom: surface processes at

play

CDW-=circumpolar Deep Water
APF=Antarctic Polar Front
PFZ=Polar Front Zone

AAIW= Antarctic Intermediate
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Figure 4 Southern Ocean control on thermocline nutrient concentrations. Conceptual
diagram depicting the Southern Ocean physical and biological processes that form low-
Si* waters and feed them into the global thermocline. Top, water pathways; bottom,
details of surface processes. Upper Circumpolar Deep Water (CDW) upwells to the surface
in the Southern Ocean, and is transported to the north across the Antarctic Polar Front
(APF) into the Polar Front Zone (PFZ), where Antarctic Intermediate Water (AAIW) forms,
and then across the Subantarctic Front (SAF) into the Subantarctic Zone (SAZ), which is
bounded to the north by the Subtropical Front (STF). Silicic acid is stripped out
preferentially over nitrate as the water moves to the north, thus generating negative Si*
values. This negative-Si* water is Subantarctic Mode Water (SAMW), which sinks into the
base of the main thermocline and feeds biological production in the low latitudes.
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e The overturning circulation determines the broad
patterns in the global distribution of nutrients (N, P, Si)

(but not of iron! for which Atlantic > Indian > Pacific > Southern
Ocean)

e However, on seasonal to interannual time scales
biological productivity is more sensitive to the basin-

scale gyre circulation



The wind-driven circulation
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——— Subtropical Gyres

——— Equatorial and Tropical Circulations /——>
———— Intergyre and/or Interbasin Exchanges

—— Polar and Subpolar Current Systems 4=

Fig. 14.1 A schema of the main currents of the global ocean. Key: STG -
Sub-Tropical Gyre; SPG - Sub-Polar Gyre; WBC - Western Boundary Current;
ECS - Equatorial Current System; NA - North Atlantic; SA - South Atlantic;
NP - North Pacific; SP - South Pacific; SI - South Indian; ACC - Antarctic
Circumpolar Current; ATL — Atlantic; PAC - Pacific.

from Vallis, 2006
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m The large-scale surface circulation consists of subpolar
(cyclonic) and subtropical (anticyclonic)gyres

m Exception at the equator =+ surface currents are

predominantly westwards and the vertical integrated flow
Is eastward

m The gyres are strongest in the west = intensification of
western boundary currents

m \Western boundary currents from subpolar and
subtropical gyres lead to the Gulf Stream, Kuroshio and
Brazilian currents
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Fig. 14.2 Top: The time-averaged velocity field at a depth of 75m in the
North Atlantic, obtained by constraining a numerical model to hydrographic
observations. Bottom: The streamfunction of the vertically integrated flow,
in Sverdrups. Note the presence of an anticyclonic subtropical gyre, a cy-
clonic subpolar gyre, and intense western boundary currents.?

The zero-order features of
the ocean gyre circulation
has been described by a
steady, forced-dissipative,
homogeneous model
proposed by Stommel (1948)

from Vallis, 2006



The Stommel model

The planetary geostrophic eq. for a Boussinesq fluid in the
limit of small Rossby number are:

Db _»
Dt

thermodynamic eq

continuity

horizontal momentum
(geostrophic balance + wind stress)

vertical momentum
(geostrophic balance)
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Figure 2: Estimate of phytoplankton distribution in the surface ocean: global composite image of
surface chlorophyll a concentration (mg m~) estimated from SeaWiFS data (Source: NASA Goddard

Space Flight Center, Maryland, USA and ORBIMAGE, Virginia, USA).
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Upwelling and downwelling associated to
the EKman transport

cyclonic circulation anticyclonic circulation

northerly wind

Ekman transport

southerly wind
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from Sarmiento & Gruber, 2006



and to equatorial divergence and subtropical
convergence

EQUATORIAL DIVERGENCE SUBTROPICAL CONVERGENCE
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averaged vertical velocities
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Focusing on the averaged concentration of
nitrate
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Impact on biogeochemistry: production associated
with the vertical velocities in the gyres
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Fig. 2.10. Annual primary productivity (colour shaded in
mol C m~2yr') and wind-induced (Ekman) upwelling (solid con-
tours in myr-'). The annual primary productivity is inferred from
satellite observations of surface chlorophyll by Sathyendranath
et al. (1995) and the upwelling inferred from a wind-stress clima-
tology. The primary productivity shows maximum values in the
subpolar gyre and reduced values over the subtropical gyre,
broadly following the patterns of gyre-scale upwelling (reproduced
from Williams and Follows (1998b))



Impact on biogeochemistry: production associated
with the horizontal velocities

Lateral transfer of nitrate

a Vertical Ekman nitrat flux

Williams & Follows(1998) 80 40




Tracer conservation equation

dC

P Advection + diffusion + reaction

The advection due to the large scale circulation
(wind-driven + MOC) explains the average
distribution of chemicals in the absence of
biological reactions



modeled distribution of nitrate in the
absence of biology

LRl Nitrate without biology after 5 years
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modeled distribution including biology

il Nitrate with biology (mmol m3)
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What else?

m [ime-dependence: so far steady state
circulation. By including time dependence
we add a rich set of processes (waves,
eddies, convection) and various modes of
climate variability from intraseasonal to
inderdecadal (ENSO, NAO, PDO, NPGO

etc....)
m (Diffusion — molecular, turbulent diffusion...)




