Climate Projections for North America over the next 50 years: Uncertainty due to Internal Variability

Clara Deser & Adam Phillips

ASP Summer Colloquium August 6, 2013

Climate Change

Signal: △ Mean/Uncertainty

Climate Change: Sources of Uncertainty

Forcing

- GHG emissions scenario (e.g., B1, A1B, A2, 4 RCPs) ozone, sulfate aerosols, land use, black carbon ...
- ✓ IPCC 4th and 5th Assessments (multiple scenarios)
- Response
 - Model differences (different physics, parameterizations, resolution ...)
 - ✓ IPCC 4th and 5th Assessments: 23 and ~60 models
- Internal (Unforced) Variability
 - atmosphere
 - ocean
 - coupled atmosphere-ocean system

X IPCC 4th and 5th Assessments: < 3 simulations per model multi-decadal variability poorly assessed

Assessing Climate Change in the Presence of Unforced Multi-decadal Variability

Unforced Climate Variability

Forced Climate Change

Two Examples of Unforced Multi-Decadal Variability

Assessing Climate Change in the Presence of Unforced Multi-decadal Variability: The CCSM Large Ensemble Project

Community Climate System Model v3 (CCSM3 T42)

Different atmospheric initial states (Dec 1999, Jan 2000) Same ocean, ice, land initial states (Jan 1, 2000)

A First Look

Winter Air Temperature Trends 2010-2060

Each simulation is forced with the identical GHG increase

Summer Precipitation Trends 2010-2060

Each simulation is forced with the identical GHG increase

Superposition of Internally-generated and GHG-forced Trends in any Single Realization

Forced Trend: Average of all 40 Runs

Internal Trend: Total - Forced

Winter Air Temperature Trends 2010-2060

- Forced and unforced amplitudes similar over U.S.
- Unforced component has large spatial scales

Summer Precipitation Trends 2010-2060

- Unforced component can be larger than forced
- Unforced component has large spatial scales

Traditional Signal-to-Noise Analysis

Signal: Forced (ensemble mean) Trend

Noise: Standard Deviation of Trends across the ensemble

40-member CCSM3 vs. 17-member ECHAM5

Chance of a positive trend (warmer, wetter) in the next 50 years

runs with a positive trend total # runs

Chance of a Positive Trend in the Next 50 Years

Chance of a Positive Trend in the Next 25 Years 2010-2035

What causes internal variations in 50-year climate trends? (where does the "noise" come from?)

Thermodynamics

(Clouds/water vapor, Snow cover, Soil Moisture, SST, Sea Ice)

Dynamics (Atmospheric Circulation)

CCSM3 DJF Temperature & SLP Trends 2010-2060

CCSM3 DJF Temperature & SLP Trends 2010-2060

SLP Trend contour interval = 1hPa / 51 years

Forced SLP trends small compared to unforced

CCSM3 Large Ensemble SLP Trends 2005-60

Internal Variability

IPCC AR4 (CMIP3) Model Archive SLP Trends 2005-2060

Model Sensitivity or Internal Variability?

How should we compare single realizations from different models?

Air Temperature Trends (2010-2060) Internal + Forced Responses in a Single Realization

Air Temperature Trends (2010-2060) Internal + Forced Responses in a Single Realization

Can compare, but need enough ensemble members to define

How should we compare single realizations from different models?

Can only directly compare the *forced* component; the *internal* component can only be compared in a probabalistic sense, or after "removing" the effect of the atmospheric circulation.

Winter Air Temperature Trends (2010-2060)

3 orthogonal SLP trend predictor patterns for each air temperature grid box

Comparing single model runs with nature (attribution of climate trends)

1970-2005 30-member CCSM4-1° 17-member ECHAM5 Winter Air Temp. Trends (1970-2005)

C = CCSM4

E = ECHAM5

OBS

North Atlantic Sea Surface Temperature Trends 1970-2005

ANN CCSM4 TS Trend 1970-2005 (K 36yr-1)

Summary and Outlook

 We should expect a range of climate trends on local and regional scales over the next 50 years due to superposition of the GHG-forced response and internal variability.

2) The spread in 50-year climate projections within a single model is mainly due to unforced (and unpredictable) atmospheric circulation variability.

- 3) Large (10-40 member) ensembles are needed to:
 - a) define the forced climate signal on regional and local scales,
 - b) compare models,
 - c) compare models with nature.

4) Other regions may exhibit higher signal-to-noise ratios (i.e., the tropics) as well as some decadal predictability (recent work by Meehl, Branstator, Teng, Newman...)

Thank You

Large Ensemble output available from the CESM Climate Change and Variability Working Group

http://www.cesm.ucar.edu/working_groups/Climate/

New CESM/CAM5-1° 30+ member ensemble for 1920-2080 is now underway

Deser et al., 2012: Climate Dynamics
Deser et al., 2012: Nature Climate Change

Deser et al., 2013, J. Climate, submitted

EXTRA

Amplitude of Decadal Variability (std dev 8yr low-pass)

Amplitude of Decadal Variability Sea Level Pressure

std dev 8yr low-pass

Signal-to-Noise for 2010-2060 Trends

