

Benjamin Z. Houlton

Associate Professor of Global Ecology and Biogeochemistry Department of Land, Air and Water Resources UC Davis

bzhoulton@ucdavis.edu • houlton.lawr.ucdavis.edu • @benhoulton #houltonlab

Outline

- Part 1. Nutrient limitation defined
 - Perspectives, theory: 3 essential concepts
- Part 2. Patterns of nutrient limitation and controls
 - Nitrogen limitation and controls
 - Phosphorus limitation and controls
 - Co-limitation, feedback and maintenance

Part 1. Nutrient limitation defined

General Definition (direct assessment):

Nutrient limitation occurs when meaningful additions of an essential element in biologically available forms cause an increase in the rate of a biological process (such as primary productivity) and/or in the size of an important ecosystem compartment (such as biomass).

(after Vitousek et al. 2010)

For example...

Vitousek and Farrington, 1997

Indirect assessments

- 1. Nutrient availability in soil (Powers 1980)
- 2. Plant investments in acquiring particular nutrients (Harrison and Helliwell 1979)
- 3. Tissue concentrations or ratios of elements (van den Driessche 1974, Koerselman and Meuleman 1996).

For example...

Reed et al., New Phytologist, 2012

Concept A. Single Liebig

The "law of the minimum": the environment is unlikely to provide resources in the precise proportions required, at any given site a plant should be limited by the single resource in lowest supply relative to need. A plant should increase growth in response to addition of its one limiting resource until it becomes limited by some other resource.

After Gleeson and Tilman, 1995

AVAILABLE R 1

Concept C. Multiple Resource Limitation (MRL)

Multiple resource limitation (MRL), which occurs when the addition of any one of several resources causes an increase in production and/or biomass.

Three general pathways:

- a. Physiological processes within plants e.g., Root/shoot adjustments
- b. Positive interactions in resource supply e.g., N stimulates P mineralization
- c. Limitation of different species or functional groups within an ecosystem by different resources e.g., N fixers P limited, non-fixers N limited

Case study: The Problem of N fixation

Biome

Mature Boreal Forest

Mature Temperate

Forest

Lowland Tropical Forest

Savanna

Woody Legumes

Absent

Absent

10 - 49%

6 - 56%

Houlton et al. Nature 2008

Proposed feedback between N fixation, N limitation, P limitation, and biochemical P mineralization

Phosphatase activity

Wang, Houlton, Field, GBC, 2007

Simulation 1 = phosphatase plus energetic constraint on N fixation

Houlton et al. Nature 2008

Part II. Patterns of nutrient limitation and controls

Nitrogen limitation is widespread

...but so is P...

Ecosystem-scale mechanisms of N limitation

Pathway	Mechanism	Timescale	
Demand-independent losses	losses of combined N that organisms cannot prevent, including leaching of DON, post- disturbance losses, some gaseous pathways	decades to centuries; depends on loss pathway	
Constraints to biological N fixation	biological N fixation is slow or absent even when N is limiting; could be due to energetic costs, differential grazing, demands for P, Mo, or other essential elements	decades to centuries	
Transactional	slow release of N from complex organic into soluble forms, relative to the supply of other resources	years to centuries	
Sink driven	sequestration of available N in an accumulating pool within ecosystems	decades to millenia	

after Vitousek et al. 2010

Availability independent losses of N and the imprint of humans on the global N cycle

Case Study: HBEF

Natural vs. Anthropogenic Disturbance

Table 6. Nitrate (NO_3^-) Losses (mol/ha y) Observed for Disturbances to Temperate Broadleaf Forest Ecosystems

	Agent of Disturbance							
Stream Flux	Soil Freezing ^a	Natural			Anthropogenic			
		Insect Defoliation ^b	Ice Storm ^c	Clear-Cut Strip		Strip-	Whole-Tree	
				$Commercial^d$	$Experimental^d$	1	Harvest ^e	
NO ₃	100–450	70–350	349–522	4100	10,000	1200	2000	

^aMitchell and others 1996.

Houlton et al., Ecosystems, 2003

^bEshleman and others 1998.

^dLikens and others 1978.

^ePardo and others 1995.

^{&#}x27;Hubbard Brook Experimental Forest watershed 1 longitudinal gradient (this study).

Houlton et al., Nature, 2008

Constraints to N₂ fixation

Reed et al., Eco Mon., 2012

Ecosystem-scale mechanisms of P limitation

Pathway	Mechanism	Timescale
Depletion driven	loss of inorganic and dissolved organic P via leaching; exhaustion of primary minerals in soil	millions of years
Soil barrier	formation of soil layers that physically prevent/inhibit access by roots to potentially available P	hundreds to tens of thousands of years
Transactional	slow release of P from mineral forms, relative to the supply of other resources	decades to centuries
Low-P parent material	low inputs of P via weathering due to low concentrations of P in rock	all; develops quickly and persists
Sink driven	sequestration of available P in an accumulating pool within ecosystems	decades to millenia
Anthropogenic	enhanced supply of other resources (especially N) causes P limitation	years to decades

Depletion-driven P limitation: "The Walker & Syers model"

Anthropogenic P limitation

Nutrient cycling interactions and synergy

- P by N interaction in lakes, etc
- Phosphatase enzymes: N by P interactions on land

Schindler, Science, 1977

Phosphatase: N by P interaction

- Class of enzymes that cleave ester-bonded P making it available for uptake.

-Global meta-analysis data show an increase in plant and microbial phosphatase with added N, a decrease with added P.

Marklein and Houlton, New Phytologist, 2012

Summary

- Nutrient limitation is widespread, observed directly and indirectly.
- Three concepts: Single "Liebig"; Optimization;
 Multiple Resource Limitation
- Ultimately, mass-balance determines limitation by N and P
- Synergies can (and do) alter patterns of N and P co-limitation