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Interaction of carbon and nutrients
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Human influences of N and P cycles

Fuel combustion flux (Tg N yr™)
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Global simulations of NxC interactions

1993. Melillo et al. published their estimate of NPP response to
climate change and CO2;

1993. Schindler et al. showed N deposition could contribute to a
carbon of 0.6 to 2 Gt C/yr; and that estimate was refined by
Townsend et al. (1996) to 0.4 to 0.8 Gt C/yr in 1990’s.

Hungate et al. (2003), Wang & Houlton (2009) showed global
models without N overestimated land C uptake and
underestimated global warming

2008, Sokolov et al. conducted the first fully coupled CN
simulation using a simple earth system model;

2013. AR5, only an ESM with N cycle, and its land C uptake
sensitivity to CO, was about 25% of the mean of other models
without N



a. Soil-plant N cycle
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Internal cycling:

assimilation  (soil to plant)
resorption (plant)

litter fall (plant to litter)
ammonification: organic N to NH,
nitrification: NH,-> NO,
denitrification: NO5->N,O-N,
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Natural N fixation

Cleveland et al. 1999
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Plate 2. Mapped potential annual BNF by natural ecosystems based on the relationship between the central estimates of BNF (N fixation = 0.234(ET)
- 0.172) and ecosystem ET. Values are kg N ha' yr'. White arcas represent regions where modeled ET values are unavailable.
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Internal N process: Resorption
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Internal processes: plant uptake

Plant N uptake: Plant can take up both NH4 and NO3 and dissolved organic N.
Plant N uptake rate depends on the rate of soil supply, root length and root
activities.
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However, nutrient
diffusion is not
explicitly represented
in global models.
Nutrient uptake is
usually modeled as
the smaller value of
available nutrient and
plant demand.



Internal N process: Mineralization/
immobilization

Gross mineralization (G): the rate of total amount of N released via
mineralization

Immobilization (1): uptake of N by soil microbes and used for their growth
Net mineralization (N) = gross mineralization- immobilization

Microbial carbon use efficiency (e): the fraction of carbon uptake that is used
for growth. Theoretical max: 0.6 for soil microbes (see Sinsbaugh et al. 2013).

The critical C:N ratio of substrate

Assuming C:N of soil microbes of 10:1 with e= 0.4;

BY decomposing 100 g litter C, soil microbes increase their body mass by 40 g C
and requires 4 g N (immobilization).

Gross mineralization rate =100/(C:N ratio of litter)

If litter C:N ratio is higher than 25:1, N <0

If litter C:N ratio lower than 25:1, N>0,

25:1 is the critical C:N ratio of decomposing substrate.




N mineralization and carbon use efficiency
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Internal processes: nitrification and denitrifcation

Nitrification (aeorbic): conversion of NH,*to NO;".
Denitrification( anaerobic, or low oxygen): NO;->NO,->NO->N,O->N,
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Denitrifcation: interactive effects of temperature and moisture
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Nitrogen loss

Nitrogen leaching represent a loss of inorganic N
(nitrate) and organic N from terrestrial
ecosystems.

Globally it can be larger than gaseous loss (Bai et
al. 2012), accounting for about 65% of N loss from
natural ecosystems.

For managed the systems, fraction of gaseous
loss can be significantly larger than leaching, but
loss of N, is difficult to measure, therefore closing
a N budget is difficult for many ecosystems .



Nitrogen gaseous loss (hole in the pipe)
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Two approaches for N loss

1: A hole in the pipe approach
Total N loss o gross N min.
NO:N20:N2 = function (WFPS)
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b. Soil-plant P cycle
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Soil P availability

*Soil pH determines the most abundant form of inorganic P in
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Biochemical mineralization

Biochemical mineralization is the processes of converting organic P to
inorganic P by enzymatic reaction (phosphatase). Both plant roots and soil
microbes can produce phosphatase (acid and alkaline phosphatase).
Following Hui et al. (2013), the activity of phosphatase, V, can be modeled as
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Phsphorus adsorption (mg P kg 7 soil)

P sorption in soil
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P sorption in soil can be modelled
using the Langmuire equation:

})Solution — ] + })Solution
sorbed bS max S max

Parameter b is a constant
related to bonding energy,
S.ax 1S the Langmuir sorption
maximum, both §__ and b
vary with soil pH, content of
Al, Fe, Clay and organic C
content etc.



Fractionation of soil P
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Weight of P/unit area of soil

Soil P dynamics at geological time scale
(Walker and Syers’ theory)

Mineral

Organic

Occluded

Time

Source: Filippelli 2002

Key points:

all P land biosphere is derived
from Rock weathering.

For young soil, most P is in
mineral form, and P available for
plant uptake is high, as soil ages,
mineral P becomes adsorbed,
and unavailable to plant.
Therefore productivity of plant
ecosystem is P limited.

Total amount of soil P also
decreases as soil ages, as soil P is
lost via leaching or soil erosion.




Global N and P fluxes (Tg N or P/yr)
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Effect of N and P on photosynthesis
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Effect of nitrogen on carbon fluxes
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Effect of bhosphorous on carbon cycle
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Global pattern of N vis P limitation
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Latitude

Global nutrient limitation
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Progressive nltrogen limitation

N sequestered in
biomass and litter
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Modelling N and P cycles on land

Compartmental modeling approach.

Compartmental modeling: divide the pools by function (Plant,
litter, soil) and residence time (fast, slow);

Plant: leaf, wood, root (coarse root, fine root)
Litter: metabolic, structure litter, coarse woody debris
Soil: organic and inorganic

Pool dynamics is modeled using first-order, or Michaelis-
Menten kinetics



How nutrient-carbon interactions are
represented in global land models?
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Comparing the two models
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Effects of nitrogen limitation (IGSM)
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Concentration [ppmv]

Effect of nitrogen limitation (CCSM3)
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variable soil layers (= 2)

CABLE: its components
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C accumulation from 1850 to 2100
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Sensitivities of land carbon

Change in total carbon pool, (AC,) in response to increasing
atmospheric CO, (ACO,) and climate change (AT) can be
approximated as

AC, =B, ACO, +y, AT

P is the CO, sensitivities of land carbon in Gt C/ppm (>0)
v, is the climate sensitivity of land carbon in Gt C/K (<0).

Values of , and y, are estimated from the differences of
simulated carbon pool size between control, uncoupled (only
changing CO2 is seen by land biosphere) and coupled (both
climate and CO2 are seen by land biosphere) simulations.



The T and CO, sensitivities of global land carbon uptake
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IPCC AR5 models +COAL

CN model
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Summary

Human activities have significantly altered the nutrient cycles
globally;

Nutrient limitation can significantly affect all carbon fluxes in
terrestrial ecosystem;

N limitation dominates at mid- and high latitudes while P
limitation dominates at low latitudes and southern
hemisphere;

Globally, sensitivity of photosynthetic carbon uptake to
increasing CO,, so-called CO, fertilization effect, by 2100 can
be reduced by 50% by nitrogen limitation, and another 40%
by phosphorous limitation. These estimates have very large
uncertainties.
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