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a b s t r a c t

In the last 80 years, a number of mathematical models of different level of complexity have been
developed to describe biogeochemical processes in soils, spanning spatial scales from few mm to thou-
sands of km and temporal scales from hours to centuries. Most of these models are based on kinetic and
stoichiometric laws that constrain elemental cycling within the soil and the nutrient and carbon
exchange with vegetation and the atmosphere. While biogeochemical model performance has been
previously assessed in other reviews, less attention has been devoted to the mathematical features of the
models, and how these are related to spatial and temporal scales. In this review, we consider w250
biogeochemical models, highlighting similarities in their theoretical frameworks and illustrating how
their mathematical structure and formulation are related to the spatial and temporal scales of the model
applications. Our analysis shows that similar kinetic and stoichiometric laws, formulated to mechanis-
tically represent the complex underlying biochemical constraints, are common to most models,
providing a basis for their classification. Moreover, a historic analysis reveals that the complexity and
degree and number of nonlinearities generally increased with date, while they decreased with increasing
spatial and temporal scale of interest. We also found that mathematical formulations specifically
developed for certain scales (e.g., first order decay rates assumed in yearly time scale decomposition
models) often tend to be used also at other spatial and temporal scales different from the original ones,
possibly resulting in inconsistencies between theoretical formulations and model application. It is thus
critical that future modeling efforts carefully account for the scale-dependence of their mathematical
formulations, especially when applied to a wide range of scales.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

About three-fourth of the organic carbon contained in terrestrial
ecosystems and the majority of organic nitrogen are found in plant
residues and soil organic matter (Schlesinger, 1997; Lal, 2008). Both
organic carbon and macro-nutrients are mineralized to simple
inorganic forms by a highly dynamic community of microbial and
faunal decomposers (Brady and Weil, 2002; Berg and McClaugh-
erty, 2003; Paul, 2007). Although this process of mineralization
occurs at the decomposer cell scale and is affected by the soil
physical and biological interactions (e.g., climate and vegetation), it
involves globally a gross release of carbon dioxide to the atmo-
sphere in amounts one order of magnitude larger than the
anthropogenic emissions (Schlesinger, 1997; Lal, 2008) and
provides most of the inorganic nutrients necessary for plant growth
.

All rights reserved.
in natural ecosystems (Waksman et al., 1928; Brady and Weil,
2002).

Since the 1930s, several mathematical models at different levels
of detail have been developed to quantitatively describe these
processes (e.g., Tanji, 1982; Dewilligen, 1991; McGill, 1996; Molina
and Smith, 1998; Benbi and Richter, 2002; Shibu et al., 2006). The
number and variety of these models mirror a relentless effort to
describe and quantify the complex nature of soils and the elemental
cycling within them. Soils are spatially heterogeneous at molecular
to continental scales (Ettema and Wardle, 2002; Young and Craw-
ford, 2004), and their temporal dynamics span a wide range of
scales going from the hourly responses to environmental fluctua-
tions (Austin et al., 2004; Schwinning and Sala, 2004) and changes
in resource supply (Zelenev et al., 2000), to the decadal time scales
of ecosystem and climatic changes and the even longer time scales
characteristic of soil development (Richter and Markewitz, 2001).
The extreme variety of biogeochemical processes is further
complicated by climatic and anthropogenic external forcing factors.

The development of a mathematical model generally follows
three subsequent steps (Ulanowicz, 1979): i) definition of the state
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variables for the scale of interest; ii) identification of inputs,
outputs, and possible interactions; iii) model verification. Most of
the previous reviews on biogeochemical modeling primarily
address the verification step (e.g., Dewilligen and Neeteson, 1985;
Andrén and Paustian, 1987; Melillo et al., 1995; Powlson et al., 1996;
Jans-Hammermeister and McGill, 1997; Smith et al., 1997; Moor-
head et al., 1999; Zhang et al., 2008). Fewer works focus on the first
two critical steps: describing the effects of different choices of the
state variables (e.g., Bolker et al., 1998; Bruun et al., 2004; Pansu
et al., 2004; Fontaine and Barot, 2005) and comparing different
formulations of the interactions among them (Molina and Smith,
1998; Ma and Shaffer, 2001; McGechan and Wu, 2001; Plante and
Parton, 2005; Manzoni and Porporato, 2007; Wutzler and Reich-
stein, 2008).

The goal of this review is not to test modeling hypotheses or
assess model performances, but to provide an extensive compar-
ison of mathematical approaches to soil carbon (C) and nitrogen (N)
cycling and discuss a model classification based on kinetic laws and
stoichiometry. The difficulty of classifying soil biogeochemical
models according to their mathematical formulation arises because
of the large number of possible combinations of different model
structures (e.g., number of variables and mass flow architecture)
and reaction terms (e.g., linear vs. nonlinear kinetic laws). However,
all these models deal with processes controlled by similar biogeo-
chemical constraints, and basically describe the transfer of matter
from organic to inorganic compounds. This mineralization process
can be regarded as a complex, biologically mediated series of
reactions, where organic substrates are converted into living
biomass and mineral residues (Swift et al., 1979). It is typically
modeled by kinetic laws describing organic matter degradation,
where microbial stoichiometric relationships are employed to
regulate the associated C–N balances. In what follows we will
compare the mathematical formulations used to describe these two
fundamental aspects of C and N cycling, with the hope to highlight
possible limitations of current approaches and help future cross-
disciplinary theoretical developments.

A simplified mathematical representation of the substrate–
microbial biomass interactions will be presented and guide our
model classification, where indices of model structure and
complexity are included, along with a characterization of key
biogeochemical processes (Table A2). About 250 mathematical
models developed during nearly eight decades are reviewed,
considering both highly cited sources and less known theoretical
analyses describing the various aspects of soil dynamics, as well as
soil organic matter submodels embedded in hydrologic or
ecosystem models. Since model structure and formulations are
expected to change with the scale and level of resolution needed for
the particular applications (Manzoni and Porporato, 2007; Manzoni
et al., 2008b), we also analyze the relationships between model
formulations and the temporal and spatial scale of application.

The review is organized as follows:

C Section 2 describes the general structure of soil biogeo-
chemical models, with an emphasis on stochastic compo-
nents, mathematical formalisms, and level of complexity (e.g.,
the dimension of the phase-space), and relates these features
to the scales of interest.

C Section 3 presents an overview of the mathematical formu-
lations used to characterize two key processes in C and N
cycling in soils, i.e., decomposition of organic matter and
nitrogen mineralization and immobilization. Both processes
are analyzed under the common framework of substrate–
decomposer stoichiometry, thus stressing the role of the
microbial biomass as both an SOM degrading agent and as
a controlling factor of N cycling. This approach allows us to
compare mathematical models coming from different fields,
ranging from microbiology to ecosystem ecology.

C Section 4 analyzes the relationships between model formu-
lation and scale, discussing how the different formulations
are used across or at individual scales.

C Section 5 puts the previous analyses into perspective with
respect to the dominant trends in soil biogeochemical
modeling and discusses the main limitations of the current
approaches. Based on these conclusions, we provide some
guidelines for future research.

C Finally, Appendix A reports the list of the reviewed models
and their most important mathematical features with respect
to this synthesis.
2. Historic appraisal of mathematical structure and
complexity in soil biogeochemical models

Soil biogeochemical models describe a system including SOM
constituents (both passive substrates and active biological
decomposers), interacting with inorganic compounds, environ-
mental variables, and subject to external inputs and outputs (Fig. 1).
Here we review how the mathematical description of such
a complex system is framed. We discuss the general model struc-
ture and spatial resolution (Sections 2.1–2.3), the number of vari-
ables used at different scales (Sections 2.4 and 2.5), and the
presence of stochastic elements (Section 2.6).

2.1. From compartment to continuum-quality models

Although SOM is an extremely heterogeneous mixture of
compounds (Swift et al., 1979), early mathematical models
described the processes of decomposition and mineralization using
simple chemically and spatially lumped models (Table A2; Fig. 2a).
Nikiforoff (1936) was probably the first to suggest that the forma-
tion of humus may be described by multiple coupled equations
each characterizing a pool with different turnover times. Later,
Minderman (1968) developed similar ideas to describe the
macroscopic patterns of organic matter degradation resulting from
the compound effects of different substrates. This idea resulted in
a number of compartmental models. As noted by Halfon,
‘‘Compartmental analysis is a phenomenological and macroscopic
approach for modeling a physicochemical process. A compartment
(or state variable [.]) is a basic unit of functional interest’’ (Halfon,
1979, p. 2). Recent models employ a number of such chemically
homogeneous compartments, which interact among them and
possibly with the microbial biomass (Fig. 1). Most soil food web
models are also compartment models, where particular attention is
given to the trophic interactions among microbial and faunal
groups (Hunt et al., 1987; Deruiter et al., 1993; Zheng et al., 1999;
Zelenev et al., 2006).

In compartment models, all the organic matter molecules with
similar chemical characteristics or degradability are included in the
same pool and the information regarding the age or residence time
of biogeochemical compounds within each compartment (or in
general since the introduction of organic matter into the soil
system) is not explicitly tracked. Nevertheless, the distribution of
the ages of SOM compounds can be reconstructed knowing the
model structure and how the fluxes among the pools are defined
(Bruun et al., 2004; Manzoni et al., in preparation). In contrast to
typical compartment models, some biogeochemical models
explicitly track the evolution of any organic matter ‘‘cohorts’’ (i.e.,
‘‘sets of items of the same age’’, Gignoux et al., 2001) from their
incorporation into the litter or humus and until their complete
degradation (Furniss et al., 1982; Pastor and Post, 1986; Ågren and



Fig. 1. Conceptual scheme of the main interactions between soil substrates and organisms, as represented by spatially lumped and spatially continuous representations. Gray and
blank boxes respectively represent carbon and nitrogen compartments and fluxes. The dashed lines in the SOM boxes (left) qualitatively illustrate how the substrate and
decomposer variables are treated as a continuum in the Q-model (Ågren and Bosatta, 1996).
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Bosatta, 1996; Gignoux et al., 2001). This approach provides one
way to interpret tracer studies and other paleoecological dating
techniques (Bruun et al., 2004; Bruun et al., 2005).

In contrast to the discrete representation of soil organic matter,
continuum-quality models (Carpenter, 1981; Bosatta and Ågren,
1985; Forney and Rothman, 2007) based on a distribution of C and
b

a

Fig. 2. Historic trends of model complexity and variable functional type. (a) Box plots
of the number of variables in the litter and one soil layer (phase-space dimension,
PSD); (b) percentage of total PSD in each functional class of variables: physical envi-
ronment, inorganic, microbial, and organic substrate pools. Continuous quality models,
with infinite-dimensional phase-space, are not considered; all models published
before 1970 are grouped together (most of them have one variable only, so that the
mean and the quartiles in (a) coincide).
N substrates along a quality axis (Fig. 1, dashed lines) analytically
describe both single and multiple cohort dynamics as well as
different substrate–microbe networks through a specific function
controlling the quality evolution during microbial assimilation and
turnover (Ågren and Bosatta, 1996).
2.2. Modeling spatial variability

Soils are highly spatially heterogeneous, with variability of chemical
and physical properties along the vertical profile (Brady and Weil,
2002), around small-scale biologically active patches and individual
plants, and at the landscape scale (Ettema and Wardle, 2002; Young and
Crawford, 2004). Compartment models have been in part extended to
account for spatial variability (Fig. 1). While the biogeochemical
processes along vertical soil profiles are addressed by a number of
models, only few attempt an explicit description of spatial heteroge-
neities from the soil aggregate to the landscape scales.

Some early biogeochemical models already employed either
a discrete representation of soil layers with different chemical and
physical features (Beek and Frissel, 1973; van Veen and Paul, 1981)
or a continuous description of SOM and nutrient dynamics along
the soil profile (O’Brien and Stout, 1978). Today, most soil and
ecosystem models consider different soil layers, often connected
through the water flow, which drives the advection of organic and
inorganic dissolved compounds along the profile (Hansen et al.,
1991; Li et al., 1992; Parton et al., 1993; Frolking et al., 2001; Garnier
et al., 2001; Grant, 2001; Kirschbaum and Paul, 2002; Liu et al.,
2005; Maggi and Porporato, 2007; Wu et al., 2007; Jenkinson and
Coleman, 2008). Some models provide a continuous description of
the soil profile (Bosatta and Ågren, 1996), possibly also considering
diffusive transport due to slow mixing processes (O’Brien and Stout,
1978; Elzein and Balesdent, 1995; Bruun et al., 2007).

There are fewer models explicitly describing the spatial
dynamics of water, organic matter, or nutrients at the bacterial cell-
or colony-scale (Allison, 2005; Ginovart et al., 2005; Masse et al.,
2007), in the pore space (Long and Or, 2005), within soil aggregates
(Leffelaar, 1993; Arah and Smith, 1989), or around a root (Darrah,
1991; Toal et al., 2000; Kravchenko et al., 2004; Raynaud et al.,
2006). Horizontal spatial variability at the individual plant scale is



a

b

Fig. 3. Percentages of models with given number of variables (phase-space dimension,
PSD) (a), and with given number of decomposer variables (b). Models based on partial
and delay differential equations are indicated by N.
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generally neglected in soil biogeochemical models, while some
describe landscape level heterogeneity in SOM and litter inputs
(Walter et al., 2003) or soil hydraulic properties (Acutis et al., 2000),
the effects of erosion and SOM redistribution (Rosenbloom et al.,
2001), or horizontal transport of nutrients (Tonitto and Powell,
2006). Overall, there is a lack of spatially explicit models properly
describing soil carbon and nutrient dynamics at different spatial
scales.

2.3. Mathematical formalism and model solution

Some earlier biogeochemical models employed difference
equations or geometric series to compute organic matter and litter
accumulation at the yearly time scale (Salter and Green, 1933;
Nikiforoff, 1936; Jenny et al., 1949; Minderman, 1968; Jenkinson
and Rayner, 1977). However, the ordinary differential equation
(ODE) formalism, introduced in soil biogeochemistry by Henin and
Dupuis (1945), allows the description of SOM dynamics in contin-
uous time and has been predominantly used since then. Almost all
compartment models can be recast into systems of first order ODEs,
each describing the mass balance of a compartment (possibly
within a cohort) or a soil layer. The number of equations in these
systems of ODEs varies from model to model (Section 2.4) as does
their degree of nonlinearity (Section 3.2). Linear systems of ODEs
with constant coefficients can be solved analytically, regardless of
their compartmental organization (e.g., Olson, 1963; Bolker et al.,
1998; Kätterer and Andrén, 2001; Nicolardot et al., 2001; Baisden
and Amundson, 2003; Saffih-Hdadi and Mary, 2008; Manzoni et al.,
in preparation), while in general nonlinear models need to be
solved numerically. Despite the presence of nonlinearities,
a number of models can at least be solved analytically at steady
state (by setting the time derivatives of the ODEs to zero), thus
providing useful information on the asymptotic behavior of the
system (e.g., Loreau, 1998; Daufresne and Loreau, 2001; Manzoni
et al., 2004; Fontaine and Barot, 2005; Manzoni and Porporato,
2007; Wutzler and Reichstein, 2008).

In contrast to compartment models, those based on the
continuum quality concept, involving both time and organic matter
quality as independent variables, are in the form of systems of
partial (and sometimes integro-) differential equations (PDEs)
(Carpenter, 1981; Ågren and Bosatta, 1996). Such equations are
amenable to analytical solution only for suitable choices of the
decomposer growth and decay functions (Ågren and Bosatta, 1996;
Bosatta and Ågren, 2003), in which case leading to relatively
compact representations of the complex soil dynamics. To our
knowledge, only one model uses delayed differential equations
(DDEs) and describes nitrogen mineralization as a piston flow, i.e.,
mineralization at time t is assumed equal to the N flux entering the
soil at the time t � Dt (Thornley et al., 1995). DDEs can be inter-
preted as a special form of PDEs, and like them can be seen as
equivalent to infinite-dimensional systems of ODEs.

2.4. Historic evolution of model complexity

A first measure of model complexity (not to be confused with
the measures of dynamic complexity) is analyzed in this section by
considering the number of first order differential equations
necessary to represent the dynamics of litter and an individual soil
layer. Section 3 will analyze model complexity in terms of internal
nonlinearities and feedbacks.

The systems of equations describing soil biogeochemical models
can be interpreted as dynamical systems (Argyris et al., 1994;
Strogatz, 2000; Manzoni et al., 2004) and the number of first order
ODEs defines the so-called phase-space dimension of the dynam-
ical system (PSD). When counting the number of ODEs in this
comparison we only consider one soil layer in vertically discrete
models to allow the comparison between models with different
vertical resolution, and group the relevant variables according to
their functional role. We distinguish four groups of variables based
on their specific function, variables used to describe i) microbial
biomass, ii) soil organic matter substrates, iii) mineralization
products (e.g., ammonium and nitrate), and iv) the physical envi-
ronment (e.g., soil moisture and temperature).

The summary of the analysis of these characteristics from the
w250 models classified in Table A2 is reported in Fig. 2, where the
ten-year block averages of the number of variables per soil layer
(Fig. 2a) and the relative importance of each functional type of
variables are shown (Fig. 2b). Clearly, the increase in computational
power in the 1970s was paralleled by an increase in model detail
(Shaffer et al., 2001). Since then, the median number of variables
stabilized around five, while the variance decreased. This indicates
that in the 1970s few models had a very large phase-space
dimension (e.g., Patten, 1972; Hunt, 1977; Smith, 1979), while many
models were still extremely simple; since the 1980s fewer mini-
malist models have been proposed, leading to relatively smaller
variance in PSD (Fig. 2a). In the last decade, however, some
extremely detailed models that include multiple element dynamics
and complex biogeochemical interactions have been presented
(e.g., Grant, 2001). Today, about 70% of the models have 2–10
variables, and more than 90% have less than 30 variables, including
all functional types (Fig. 3a). This suggests that in most cases
a relatively small number of variables may be sufficient to describe
soil C and N dynamics (in agreement with analyses by Bolker et al.,
1998), while a high number of variables may be needed to detail
specific processes (e.g., methanogenesis and denitrification in
addition to C and N mineralization).
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Regarding specifically the number of state variables devoted to
microbial biomass, Fig. 2b shows that it has remained proportional
to the other functional types (e.g., substrate pools), suggesting that
modelers tend to favor a balance between the level of detail in the
passive and the biologically active compartments. Nevertheless, the
histogram of biomass variables has changed through time (Fig. 3b).
In the 1970s, only about 40% of the models explicitly accounted for
the decomposers, but 15% had very detailed microbial models
(above 10 variables). In contrast, more recently, fewer models do
not include any dynamic compartment for the microbial biomass:
about 70% have at least one, the majority of which have at most ten,
with very few models employing a large number of variables
(Fig. 3b). Also, earlier models did not include variables for the
physical environment, while today many models consider soil
moisture and temperature as dynamic components (Fig. 2b), often
by coupling soil water and heat balance equations to the biogeo-
chemical model.
2.5. Model complexity across spatial and temporal scales

We analyzed the spatial and temporal scales at which each
model is interpreted in their typical applications (see Appendix 1
and Table A1 for details), and compared them to the model phase-
space dimension (PSD). Fig. 4a shows a clear inverse relationship
between the average PSD and the temporal scale of the model,
which mirrors the necessity to describe in detail (i.e., with large
enough number of variables) highly dynamic small-scale processes.
Similarly, Fig. 4c seems to indicate a trend towards lower model
complexity (in terms of PSD) for medium-to-large spatial scales,
possibly reflecting the use of few highly aggregated variables at
those scales. In this regard, McGill (1996) hypothesized that
a correlation between spatial and temporal scales of each model
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Fig. 4. Scales and model complexity. (a) Box plots of the phase-space dimension (PSD) as
temporal scales, along with the type II regression line between them (dot-dashed line; R¼ 0.
model are reported in Table A2.
should exist, on the ground that ‘‘short time intervals are most
appropriate for fine levels of spatial resolution, and that longer time
intervals may be valid over coarser spatial scales’’ (McGill, 1996, p.
119). Despite the large scatter, our results confirm this view
(Fig. 4b), showing a highly significant positive correlation between
spatial and temporal scales.

As it will be shown in the next sections, a number of mathe-
matical features tend to be linked more to the field of application
than to the spatial and temporal scales at which the models are
applied. We denoted these application fields as ‘‘classes’’, and
distinguished among models describing small-scale processes
(microbiology, rhizosphere, and aggregate models, indicated by M),
plant residue decomposition (L), SOM dynamics (S), coupled soil–
plant dynamics (E), and models developed for global-scale appli-
cations (G). As shown in Fig. 5a, most models are in class S, and
fewer are in classes R, L, and G. These application fields often cover
a wide range of spatial or temporal scales (Fig. 5b). Rhizosphere and
aggregate models are applied at fine spatial and temporal scales,
while litter decomposition and ecosystem models are generally
applied at the field scale and at monthly-to-yearly time scales.
Models used for global simulations and climate change projections
are frequently designed for daily or monthly time scales, and
mainly applied on regional domains. This indicates that the
temporal resolution is perceived to be more important than the
level of spatial detail in such models. Finally, SOM models (S) tend
to be used at relatively small spatial scales (up to the field scale),
and at daily-to-yearly time scales.
2.6. Deterministic vs. stochastic models

Due to the existence of a large number of internal processes,
highly intermittent external forcing (e.g., hydroclimatic
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fluctuations, disturbance events, etc.), uncertainty in structure and
coupling of state variables, and spatial heterogeneity, a detailed
description of the soil system would in principle require the use of
an extremely high number of variables. However, given the
impossibility of achieving such a detailed modeling, it is highly
desirable to shift from high-dimensional models (i.e., large PSD and
highly fluctuating variables in space and time) to a suitable
combination of deterministic variables and random functions or
stochastic processes (Katul et al., 2007), thereby providing a more
parsimonious and balanced representation of the soil system. At
the same time a stochastic representation makes it possible to go
beyond a specific simulation and obtain results that are represen-
tative of a whole range of environmental conditions or structural
features, each leading to a different trajectory for the system. In this
manner, it becomes possible to characterize the model results in
term of means, distributions around them, and frequency of
extremes in a statistically meaningful way. Hence such models may
help assess the role of climatic variability and quantify uncer-
tainties in model projections (D’Odorico et al., 2004). In this section
we discuss the use of stochastic terms to account for internal (i.e.,
structural), spatial, and temporal uncertainties, while we do not
consider sensitivity analyses based on Monte Carlo simulations.

Despite the clear need of a stochastic approach, only few
biogeochemical models employ stochastic components. Among the
few available examples of internal randomness, the Q-model
employs a statistical description of the substrate quality to over-
come limitations in the uncertainty in model structure (Carpenter,
1981; Bosatta and Ågren, 1985). The quality of the degraded
substrate is considered as an internal random variable described by
a probability density function (PDF) evolving in time according to
dynamic interactions of the substrate with biotic and abiotic factors
(Ågren and Bosatta, 1996), and in space along the soil profile
according to convective and dispersive mechanisms (Bosatta and
Ågren, 1996). As noted before, the use of a PDF to describe the
quality evolution in time substitutes with a flexible framework the
common compartmental deterministic structure (Fig. 1). Moreover,
the continuum decomposability concept has recently been given
a theoretical interpretation based on the physical limitations to
substrate diffusion in a random porous medium (Forney and
Rothman, 2007; Rothman and Forney, 2007). Regarding the use of
internal stochastic components to control soil fluxes, the only other
example that we found is the individual-based model by Ginovart
et al. (2005), where the maximum number of particles that can be
assimilated per unit time and unit cell area is a random variable
extracted from a normal distribution. All the other models we
reviewed compute the fluxes according to deterministic kinetic
equations.

There are numerous examples in the literature of randomly
distributed parameters to account for spatial variability. In the
aggregate-scale model of denitrification developed by Arah and
Smith (1989), both aggregate radius and oxygen demand are
assumed to be random variables lognormally distributed. Other
models based on distributed parameters (Huwe and Totsche, 1995;
Whitehead et al., 1998; Acutis et al., 2000; Walter et al., 2003;
Botter et al., 2006) account for soil heterogeneity at the field to the
landscape scale. We note that also the spatially explicit models that
employ advection diffusion equations can be interpreted as
macroscopic representations of biased random walk processes at
the particle scale and according to this interpretation would belong
to the category of stochastic models (O’Brien and Stout, 1978;
Darrah, 1991; Elzein and Balesdent, 1995; Bosatta and Ågren, 1996;
Bruun et al., 2007; Jenkinson and Coleman, 2008). The model by
Walter et al. (2003) accounts for the random spatial variability of
SOM content and land use, which in turn drives the litter input into
the soil. Also, the temporal change from one land use to another is
controlled by a Markov chain in this model.

A few models address the stochastic nature of the climatic
forcing (van Veen et al., 1984; Pastor and Post, 1986; Porporato
et al., 2003; Botter et al., 2008; Daly et al., 2008; Wang et al., 2009),
which affects through soil moisture and temperature the rates of
soil biogeochemical fluxes. In the last four papers, for example,
rainfall was treated as a marked Poisson process in time. This allows
one to assess how the SOM and mineral compartments respond to
intermittent wetting events at different time scales and to quantify
the propagation of hydrodynamic fluctuations through the system
components (D’Odorico et al., 2003). The same stochastic rainfall
model has been also recently used to drive a simple basin-scale
nitrate transport model (Botter et al., 2006). The statistics of
denitrification resulting from stochastic rainfall patterns were
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computed by Ridolfi et al. (2003) starting from empirical relation-
ships between denitrification fluxes and soil moisture, but with no
dynamic component.
Fig. 6. Carbon and nitrogen pools and fluxes in the simplified model of microbial
biomass–substrate interactions (Eqs. (1) and (2)). Continuous and dashed lines
represent C and N fluxes; gray and blank compartments are the C and N pools,
respectively. The microbial biomass compartment and related fluxes are detailed in
Fig. 9. The scheme is used to define the specific processes discussed in the text, and is
not meant to be the most general model structure for soil C and N models (for example,
it does not consider multiple substrates and decomposer populations).
3. Modeling decomposition and N mineralization

Most models of soil substrate–decomposer interactions can be
cast in a common form in terms of balance equations (Section 3.1),
allowing us to track the historic evolution of the mathematical
structure of biogeochemical models from the 1930s to the present
day. To this purpose we introduce a simplified theoretical frame-
work for the substrate–decomposer dynamics to explain the
differences and similarities in the formulations of decomposition
(Section 3.2) and nutrient mineralization (Sections 3.3, 3.4;
symbols are explained in Table 1, other codes in Table A1). Using
this general framework we review the various models in terms of
how they logically and historically collocate themselves with
respect to it. We emphasize the laws regulating microbial stoichi-
ometry, which deal with the combination of the structural and
nutritional elements allowing the growth of decomposer commu-
nities. We further focus on the interplay between carbon, which is
the typical energy source for heterotrophs, and nitrogen, often
considered to be the most limiting nutrient for soil and litter
decomposers. A similar mathematical framework may be used to
describe the role of other limiting nutrients, such as phosphorus,
potassium, and sulfur (Smith, 1979; Hunt et al., 1983; Parton et al.,
1988; Bosatta and Ågren, 1991; Sinsabaugh and Moorhead, 1994;
Cherif and Loreau, 2009; Manzoni et al., under review).
3.1. General microbial biomass balance equations

Because microbial biomass is the driver of most soil carbon and
nitrogen cycling, we begin by writing a general form of the
microbial C and N balance equations. We consider a simplified soil
system where a single compartment of substrate, including both
carbon (CS) and nitrogen (NS), is decomposed by the microbial
biomass (CB and NB are microbial carbon and nitrogen concentra-
tions). With reference to Fig. 6, and focusing only on the equations
relevant for the microbial dynamics, we can write for the microbial
carbon balance
Table 1
Explanation of symbols (see also Figs. 6 and 9).

Symbol Description

BD Microbial biomass decay
CBðNBÞ Microbial carbon (nitrogen) concentration
CSðNSÞ Substrate carbon (nitrogen) concentration
ðC=NÞB Microbial C=N ratio
ðC=NÞCR Critical C=N ratio, defined as ðC=NÞB=ð1� rÞ
ðC=NÞIMM Net immobilization threshold, defined as hðC=NÞB=ð1� rÞ
ðC=NÞLIM Mineral N-limitation threshold
DEC Carbon decomposition flux (Eqs. (3)–(5))
IMMgross Gross immobilization (Eq. (8))
IMMmax Maximum immobilization
kS;LIN, kS;MULT,

kS;MM

Decomposition rates for linear, multiplicative, and Michaelis–
Menten formulations (Eqs. (4), (5), and (3), respectively)

KMM Michaelis–Menten constant (Eq. (3))
N Mineral N concentration
r Fraction of DEC that is respired
RG Growth respiration
RM Maintenance respiration
RO C overflow losses (Eq. (10))
h Organic N assimilation efficiency
4MNð4ONÞ Mineral (organic) N inhibition factor (Eqs. (9) and (11),

respectively)
F Microbial stoichiometric imbalance (Eq. (7))
dCBðtÞ
dt

¼ DEC� RG � RM � RO � BD; (1)

where DEC is the decomposition flux (discussed in Section 3.2), BD
is the microbial decay term; RG and RM are respectively the growth
and maintenance respiration fluxes, while RO represents C overflow
associated with N-limitation. Growth respiration is generally
assumed to be proportional to DEC (i.e., RG ¼ r DEC) and repre-
sents the only respiration flux considered in most models (denoted
by GRW in Table A2). Maintenance respiration (MNT) depends on
metabolic activities not related to growth and is generally modeled
as a linear function of microbial biomass (e.g., Daufresne and Lor-
eau, 2001; Pansu et al., 2004; Moorhead and Sinsabaugh, 2006).
Some models, indicated by G&M in Table A2, consider both growth
and maintenance respiration in their microbial biomass balance
equations. In contrast to maintenance respiration, the C overflow
flux (CO) is defined to accommodate decomposer stoichiometric
requirements in conditions of nutrient limitation (sensu Schimel
and Weintraub, 2003), as discussed in Section 3.4.1. Other meta-
bolic processes leading to C overflow (e.g., Russell and Cook, 1995)
are seldom accounted for in soil models and will not be dealt with
here. It is important to stress that Eq. (1) illustrates in a simplified
way the pathways of C exchange with the decomposer biomass,
where each respiration term plays a distinct functional role. This
idealization of the metabolic processes occurring at the cell scale
allows us to classify the different model formulations that have
been proposed.

The flux DEC not only controls C, but also determines the organic
N decomposition. In fact, N is generally assumed to follow the C
fluxes, as both elements are bond into the organic compounds. As
a result, the amounts of C and N made available through decom-
position are proportional to the substrate. While C can only be
assimilated and recycled through the microbial biomass, or
respired (Eq. (1); Figs. 1 and 6), N dynamics are more complex. N
can be directly assimilated in organic forms, mineralized to
ammonium and eventually nitrate, or immobilized by the microbes
from these mineral pools. Accounting for all these pathways, the
microbial N balance can be written as

dNBðtÞ
dt

¼ h
DEC
ðC=NÞS

� F� BD
ðC=NÞB

; (2)

where the first term is the organic N assimilation, which depends
on the organic N assimilation efficiency h (i.e., the fraction of
organic N directly assimilated by the microbes, see Section 3.3). The
second term, F, is the net N flux exchanged between the microbial
biomass and the mineral N compartment (Section 3.4), while the
last term represents the N losses due to microbial decay.

The overflow respiration and mineralization fluxes are generally
defined to ensure a given composition of the microbial biomass,



Fig. 7. Historic trends of the percentages of models using different decomposition
functions (DEC). CONS, constant decay rate; LIN and LINB, first order rate with respect
to the substrate or the microbial biomass, respectively; MULT and MM, multiplicative
and Michaelis–Menten formulations, respectively; NL, other nonlinear decomposition
equations (see also Table A1; details on the individual models are reported in Table A2).
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which in soils tends to vary within a relatively narrow range of
values both across substrate qualities (Cleveland and Liptzin, 2007)
and in time (Garcia and Rice, 1994; Jensen et al., 1997). The next
sections describe the different formulations used to model each
term in Eqs. (1) and (2), and how the different models balance the C
and N fluxes according to microbial stoichiometry.

3.2. The decomposition function

The definition of the decomposition flux, DEC, is one of the most
critical issues in soil C and N models, for it embeds most biotic and
abiotic controls on the organic C and N flow towards more stable
forms or mineral pools (Manzoni and Porporato, 2007; Wutzler and
Reichstein, 2008). Here we follow the more common practice of
basing the stoichiometric equations on organic carbon, CS, although
in some models they are defined as a function of NS (Daufresne and
Loreau, 2001; Raynaud et al., 2006), or both elements (Smith, 1979;
Neill and Gignoux, 2006). Here we focus on the degree of nonlin-
earity in the decomposition equation, and restrict our attention to
decomposition under optimal nutrient conditions, while correc-
tions to DEC due to N-limitation are considered in Section 3.4.1.

Decomposition can be regarded as an enzyme catalyzed reac-
tion, where the C flux from the organic substrate degradation
depends on both the substrate and the available enzyme concen-
tration (Schimel and Weintraub, 2003; Fang et al., 2005; Sinsa-
baugh et al., 2008). These enzymes are produced by the
decomposer community, and hence may be assumed to be
proportional to the amount of microbial biomass. Accordingly, the
Michaelis–Menten equation (MM), often used to describe enzyme
catalyzed reaction, is a realistic but parsimonious choice (Panikov
and Sizova, 1996; Blagodatsky and Richter, 1998),

DEC ¼ kS;MMCBðtÞ
CSðtÞ

KMM þ CSðtÞ
; (3)

where KMM is the Michaelis constant and kS;MM accounts for the
chemical composition of the substrate and the effects of climatic
conditions during decomposition.

On the one hand, more complex nonlinear models (NL) have
also been adopted, including negative feedbacks due to microbial
density (Garnier et al., 2001), or both microbial density and co-
metabolism effects (McGill et al., 1981; Hunt et al., 1991). In these
cases, however, more parameters are needed and model calibration
becomes more difficult. On the other hand, simplified versions of
Eq. (3) have been often used as well. In its more drastic simplifi-
cation it is assumed that either the microbial pool is constant or the
substrate concentration is much larger or, in contrast, negligible
with respect to KMM. Thus if CB is assumed to change slowly with
respect to the substrate, and CS � KMM, Eq. (3) can be approxi-
mated by simple first order rate kinetics (LIN),

DEC ¼ kS;LINCSðtÞ; (4)

where kS;LIN is the first order decay rate. Eq. (4) has been used since
the earliest models describing organic C and N decrease in agri-
cultural systems (Jenny, 1941), or litter and humus accretion in
grasslands and forested ecosystems (Nikiforoff, 1936; Olson, 1963).
These pioneering works established the paradigm of linear, donor
controlled decomposition rate (Table A2), which today still char-
acterizes most biogeochemical models, as shown in Fig. 7 (Dew-
illigen, 1991; McGill, 1996; Molina and Smith, 1998). The linear
model accounts for the substrate chemistry and ‘‘provides an
excellent first approximation, especially during early stages of
decay’’ (Berg and McClaugherty, 2003, p. 2); however, it completely
neglects the role of microbial biomass and its enzymatic products
in the decomposition process. In these donor-controlled models the
microbial biomass is thus regarded as ‘‘a substrate of decomposi-
tion, rather than as a decomposer’’ (Fang et al., 2005). According to
other interpretations, Eq. (4) implicitly assumes that microbial
activity changes so quickly that microbial biomass itself is never
a limiting factor (Paustian, 1994; Smith et al., 1998), or that physical
processes independent of microbial biomass and activity limit
decomposition (Rothman and Forney, 2007; Kemmitt et al., 2008).

When microbial responses to environmental stresses or priming
effects are involved, Eq. (4) is too simple, and the biotic component
of decomposition cannot be neglected (Schimel, 2001; Neill and
Gignoux, 2006). In these cases, Eq. (3) can be simplified by only
assuming CS � KMM, while still considering the variability of the
microbial biomass. We thus obtain the multiplicative model
(MULT),

DEC ¼ kS;MULTCSðtÞCBðtÞ; (5)

which includes the basic coupling of both reaction participants (i.e.,
decomposers and substrate), while being simpler than Eq. (3)
(Harte and Kinzig, 1993; Whitmore, 1996b; Porporato et al., 2003;
Schimel and Weintraub, 2003; Moore et al., 2005). In Eq. (5) the
substrate–decomposer coupling is analogous to a Lotka–Volterra
predator–prey interaction, and it may similarly give rise to damped
oscillatory dynamics, as sometimes observed in soil variables
(Manzoni and Porporato, 2007).

Finally, and differently from the previous simplifications, some
models assume that CS[KMM, thus leading to a model linear with
respect to the variable CB (LINB). This assumption can be made
when the actual limiting factors for decomposition are the micro-
bial enzymes, and not the substrates, as in case of recalcitrant SOM
(Fontaine and Barot, 2005). This decomposition formulation is also
implicit in steady state models where linear microbial or faunal
death rates are used, and implies a top-down control in the detritus
food chain (Hunt et al., 1987; Deruiter et al., 1993).

Given the variety of model types employed in the past, it is
important to emphasize that the choice of the decomposition
model affects the model ability to describe complex dynamics.
Linear models, although employing multiple pools, behave like
pure decay functions and cannot produce fluctuating dynamics
under constant environmental conditions (Bolker et al., 1998;
Baisden and Amundson, 2003). Manzoni and Porporato (2007)
showed that nonlinear models can describe complex dynamics



Fig. 8. Historic trends of the percentages of models using different mineralization
pathways (MIN). DIR, MIT and PAR: direct, mineralization–immobilization turnover,
and parallel schemes, respectively; MIX, other schemes with simultaneous minerali-
zation and immobilization; SIMP, simplified mineralization formulations (see also
Table A1; details on the individual models are reported in Table A2).
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(e.g., fluctuations) occurring at short time scales when the coupling
between substrates and decomposers is particularly strong, as in
the rhizosphere (Zelenev et al., 2000).

Historically, linear models have been predominant, although the
more recent biogeochemical models often adopt nonlinear or
mixed decomposition formulations (Fig. 7). While this tendency
mirrors the criticism against the linear decomposition paradigm
(Schimel and Weintraub, 2003; Fang et al., 2005; Neill and Gignoux,
2006; Kuzyakov et al., 2009), some recent theoretical consider-
ations and experimental evidence also support the concept of
linear, substrate-controlled decomposition (Forney and Rothman,
2007; Rothman and Forney, 2007; Kemmitt et al., 2008). In any
case, notwithstanding the trend towards more nonlinear formula-
tions, more than 50% of models developed in the last decade are
based on first order decomposition kinetics. Notably, there is also
an increase in the use of linear kinetics with respect to the micro-
bial biomass (LINB), which allow analytical tractability (contrary to
the nonlinear formulations) while accounting for the role of
microbial activity. How decomposition should be modeled remains
currently an unresolved issue, and it is likely that the answer is
scale-dependent, as discussed in Section 4, and related to the
specific purpose of the model.

3.3. Mineralization–immobilization pathways

In order to model the mineralization and immobilization fluxes
(i.e., the terms h DECðC=NÞ�1

S and F in Eq. (2); see also Fig. 6), two
alternative schemes have been originally proposed. The first
scheme is based on the Mineralization–Immobilization Turnover
(MIT) hypothesis, which was developed after early 15N tracer
studies demonstrated the existence of a strong N cycling between
organic and the mineral fractions (Kirkham and Bartholomew,
1954, 1955; Jansson, 1958). This scheme assumes that the organic N
is transferred to the mineral pool before assimilation by microbes.
From a modeling point of view this implies that h ¼ 0 and there-
fore that the only N assimilation pathway available is from the
mineral pool through F. Although at the micro-scale the MIT
pathway is not physiologically realistic, because the deamination
reactions resulting in ammonium formation are endogenous (Swift
et al., 1979), such a recycling may be reasonable at the soil-core
scale ðz10�1 mÞ, where the heterogeneous distribution of N-rich
and N-poor substrates (the former mineralizing N, the latter
immobilizing it) may drive strong N recycling (Schimel and Ben-
nett, 2004).

The second alternative scheme more realistically assumes the
existence of some direct assimilation of organic N in low weight
compounds, namely amino-acids, the N surplus of which is
released in mineral form. Accordingly, in Eq. (2), h ¼ 1 and all
available organic N is directly assimilated prior to mineralization
(Direct hypothesis, DIR; Molina et al., 1983). For its simplicity and
realism, the DIR scheme became prevalent in biogeochemical
models during the 1970s (Fig. 8; Table A2), gradually replacing the
MIT scheme.

In real cases, however, a combination of the DIR and MIT
pathways is typically observed at the macroscopic level, justifying
the adoption of models that employ either one or the other
pathway depending on the decomposer group (denoted by MIX),
and of the more flexible Parallel scheme (PAR, e.g., Barraclough,
1997; Garnier et al., 2001). In particular, the PAR scheme bridges
DIR and MIT by using an organic nitrogen assimilation efficiency h

that may take any value between zero (MIT) and one (DIR). Thus,
while a fraction h is directly assimilated, the fraction ð1� hÞ is
mineralized without assimilation (Eq. (2); Fig. 6). A derivation of
the link between h and soil chemical heterogeneity has been
proposed by Manzoni et al. (2008b), who showed that N cycling
tends to behave according to the DIR hypothesis in relatively
homogeneous soils, while the macroscopic-scale behavior of more
heterogeneous soils is better represented by the PAR scheme. The
value of h can thus be interpreted as an effect of soil chemical
heterogeneity, and the estimated values span the whole range
between zero and one (Manzoni and Porporato, 2007; Manzoni
et al., 2008b). As it will become clear in the next sections, this value,
and thus the structure of N cycling, plays a major role in the
microbial C and N balances when inorganic N availability is
assumed limited. As shown in Fig. 8, the PAR scheme is becoming
increasingly more used.
3.4. Modeling microbial stoichiometry

In this section we first describe the basic equations that are
commonly employed in biogeochemical models to define the C and
N demand of the microbial biomass when ðC=NÞB is assumed to be
constant and how they are interpreted to account for a possible
imbalance between organic C and N availabilities, with the possible
limiting effect of inorganic N (Sections 3.4.1 and 3.4.2). Finally we
discuss the effects of flexible microbial elemental composition, i.e.,
ðC=NÞBsconstant and review the models that adopt this general-
ization (Section 3.4.3).

3.4.1. Stoichiometry of homeostatic decomposers
Traditionally, in biogeochemical models the microbial biomass

has been considered to be strictly homeostatic (i.e., with compo-
sition independent of the substrate characteristics; see Sterner and
Elser (2002), Cleveland and Liptzin (2007)). In our theoretical
framework (Section 3.1) this translates into a constant ðC=NÞB, and
hence dðC=NÞB=dt ¼ 0. Using Eqs. (1) and (2), this implies that the
total C input in the microbial pool must be equal to the total N input
multiplied by ðC=NÞB (see also Fig. 6), that is

ð1� rÞDEC� RO � RM ¼ ðC=NÞB
�

h
DEC
ðC=NÞS

� F

�
: (6)

Eq. (6) is extremely general and, as it will be shown in the following,
can be used to derive specific equations for microbial C and N
balances when either organic C or organic N controls microbial
growth. Assuming that the decomposition model (DEC) and the
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mineralization scheme (h) have been chosen, and that the micro-
bial parameters ðC=NÞB and r are known, there are different possible
ways (and thus modeling schemes) to ensure constant microbial
biomass composition while the substrate N concentration changes.
For the sake of simplicity, we will now neglect the maintenance
respiration term RM, in agreement with some observations (McGill
et al., 1981) and as typically done in biogeochemical models (Table
A2), and consider only the C overflow fluxes involved in main-
taining the decomposer stoichiometric balance. These simplifica-
tions allow deriving from Eq. (6) a number of expressions often
used in soil models to describe C and N fluxes. We start by dis-
cussing the case of relatively high concentration of organic N in the
substrate, and then move to progressively lower N availability (i.e.,
increasing ðC=NÞS, as schematically depicted from top to bottom of
Fig. 9).

When ðC=NÞS is relatively low (organic N in excess; top of Fig. 9),
carbon limits decomposition, so that no C overflow is necessary
ðRO ¼ 0Þ. On the contrary, N is in excess, and net N mineralization
is needed to keep ðC=NÞB constant and let the microbes grow at
a rate controlled by the C decomposition, i.e., ð1� rÞDEC. The N
demand for the microbes is thus given by ð1� rÞDECðC=NÞ�1

B , which
is smaller than the amount of organic N assimilated, h DECðC=NÞ�1

S .
As a result, F is positive and is computed from Eq. (6) to compen-
sate the excess N, that is,

F ¼ DEC
�

h

ðC=NÞS
� 1
ðC=NÞCR

�
; (7)

where ðC=NÞCR ¼ ðC=NÞB=ð1� rÞ is the critical C-to-N ratio of the
substrate (Bosatta and Staaf, 1982; Manzoni and Porporato, 2007).

Fig. 10a plots the function F=DEC from Eq. (7). Clearly, when the
N content of the substrate decreases, the excess mineralization is
progressively reduced until the threshold ðC=NÞIMM ¼ hðC=NÞCR
is reached, corresponding to F ¼ 0. When the substrate C=N is
further increased beyond that threshold (central part of Fig. 9),
Fig. 9. Conceptual view of the effects of increasing substrate C=N on decomposer stoichio
arrows the N fluxes; the width of the arrows illustrates the relative importance of C and N
F becomes negative and immobilization of mineral N is needed to
compensate for the relative scarcity of organic N from the substrate
(hatched areas in Fig. 10). Lower organic N assimilation efficiencies
h favor immobilization, as more mineral N is needed. When h ¼ 0
(MIT) the N demand becomes independent of the substrate,
because all N needed for growth is immobilized from the mineral
pool (dotted lines in Fig. 10a). The combinations of organic N
assimilation efficiency h and substrate C=N leading to net miner-
alization or immobilization are also illustrated in Fig. 10b. Higher h

allows net mineralization at high ðC=NÞS, while mineral N avail-
ability controls the onset of mineral N-limitation, as discussed
below.

When organic N availability further decreases, F becomes
increasingly negative, and larger amounts of mineral N are
extracted from the soil. The mineral N pool, however, is not always
able to supply enough N, in which case mineral N-limitation may
occur (lower part of Fig. 9; shaded areas in Fig. 10). The threshold of
substrate C=N at which N-limitation occurs is defined as ðC=NÞLIM
(Fig. 10b). Biogeochemical models account for such a limitation in
various ways. Commonly, a factor is defined to reduce potential
immobilization and decomposition, as a function of the available
mineral N (Fig. 11a). Alternatively, a C overflow to eliminate excess
C is employed (Fig. 11b). These two modeling approaches are
described next.

C N inhibition hypothesis (INH). According to this scheme,
immobilization is limited by mineral N availability, and
decomposition is reduced to the point that ensures the
correct C=N in the flux feeding the biomass pool. To model
this mathematically, we follow Manzoni and Porporato
(2007) and first define the actual gross immobilization as the
product of the potential N demand F (Eq. (7)) and a reduction
coefficient ð4MNÞ that accounts for mineral N availability
(Eq. (9)),
metric models (see also Figs. 10 and 11). Shaded arrows represent the C fluxes, blank
fluxes in relation to the decomposer requirement ðC=NÞB.
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Fig. 10. (a) Normalized N imbalance F=DEC (Eq. (7)) as a function of ðC=NÞS and
establishment of mineral N demand (�IMMmax < F < 0, hatched area) or limitation
(IMMmax < jFj, shaded area) for different values of organic N assimilation efficiency h.
In (b) the combinations of ðC=NÞS and h that lead to N surplus (when F � 0 and
ðC=NÞS � ðC=NÞIMM), mineral N demand (F < 0 and ðC=NÞIMM < ðC=NÞS � ðC=NÞLIM), or
mineral N-limitation (ðC=NÞS > ðC=NÞLIM) are shown.

a

b

Fig. 11. (a) Mineral N inhibition factor (Eq. (9)) and (b) C overflow (Eq. (10)), as
a function of ðC=NÞS and organic N assimilation efficiency h.
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IMMgross ¼
�

0; F � 0
4MNjFj; F < 0

: (8)

Different formulations of gross immobilization can be
obtained from the general Eq. (8), depending on the choice of
4MN. If no control of mineral N on immobilization is considered
(i.e., 4MN ¼ 1), immobilization only depends on the potential
demand, and microbes are implicitly assumed to always satisfy
their N requirements. Certain models assume that immobiliza-
tion is unrestricted below a maximum gross immobilization
threshold, IMMmax, while it is N-limited above it. IMMmax can be
described by linear (Kirkham and Bartholomew, 1955; Hunt,
1977; Parton et al., 1993) or nonlinear kinetic laws, possibly
involving also the microbial biomass (McGill et al., 1981; Ras-
tetter et al., 1991; Grant, 2001; Porporato et al., 2003; Tonitto
and Powell, 2006). The N content of the organic substrate trig-
gers the switch from one regime to the other, as it controls the N
demand in Eq. (7). Hence, following Eq. (8), a general formula-
tion for 4MN can be given as (Porporato et al., 2003; Manzoni
and Porporato, 2007; Fig. 11a)

4MN ¼
(

1; jFj � IMMmax
IMMmax
jFj ; jFj > IMMmax

: (9)

The function 4MN is used as a reduction factor for the decom-
position flux DEC. By reducing DEC, 4MN also decreases the
mineral N demand of the microbes (Eq. (7)), thus allowing
a balanced (although inhibited) C and N assimilation. In these
conditions, mineral N becomes the most limiting factor to
microbial growth.

A limiting case is represented by models that do not consider
the switch mechanism and always assume IMMgross ¼ IMMmax,
regardless of the potential demand F (Hadas et al., 1987;
Thornley and Verberne, 1989; Rastetter et al., 1991; Harte and
Kinzig, 1993). In this case, immobilization only depends on the
availability of mineral N through IMMmax.

C C overflow hypothesis (CO). An alternative scheme to model
the effects of N-limitation involves C-overflow mechanisms
(Fig. 11b). According to this scheme, when immobilization is
controlled by the mineral N availability, decomposition is not
reduced as in the case of N inhibition, but the excess C
assimilated by the microbes is eliminated (Kersebaum and
Richter, 1994; Hadas et al., 1998; Schimel and Weintraub,
2003; Raynaud et al., 2006). From a metabolic point of view,
such mechanisms involve catabolic CO2 production (Russell
and Cook, 1995) or polysaccharide excretion (Blagodatsky
et al., 1993; Hadas et al., 1998; Neill and Gignoux, 2006),
leading to increased losses of C from the microbial cells under
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N limiting conditions. The C overflow flux, RO, can be easily
computed from Eq. (6) as the difference between the assim-
ilated C, ð1� rÞDEC, and the C fixed in new biomass thanks to
the total incoming N (from both organic and mineral sources,
Fig. 11b),

RO¼
�0; jFj�IMMmax

DECð1�rÞ�ðC=NÞB
h
h DEC
ðC=NÞS

þIMMmax

i
; jFj>IMMmax

:

(10)

A limiting case is represented by models where IMMmax¼0, so
that the C overflow perfectly balances any demand for mineral
N, and immobilization is not necessary (Baisden and Amundson,
2003; Schimel and Weintraub, 2003). Interestingly, in this case,
Eq. (10) can be rewritten as RO¼ðC=NÞBjFj, which shows that C
overflow and N mineralization fluxes (Eqs. (10) and (7),
respectively) are perfectly symmetric representations of similar
overflow mechanisms. Mineralization in this context is thus
interpreted as N overflow conceptually similar to RO (Hunt et al.,
1983; Raynaud et al., 2006).
Fig. 12. Top, schematic representation of the effect of the inhibition factor 4ON (Eq.
(11)) on DEC. Bottom, 4ON as a function of ðC=NÞS and organic N assimilation efficiency
h. The dashed arrow indicates possible mineral N immobilization, in co-limitation with
organic N availability.
3.4.2. Stoichiometry of homeostatic decomposers with preferential
assimilation of organic N

The previous section described models where the decomposi-
tion fluxes are limited by organic C availability, except for very low
organic N concentrations, when mineral N becomes a limiting
factor. In this section we discuss a few alternative models that are
instead based on the assumption that organic N limits decomposer
activity when ðC=NÞS > ðC=NÞIMM (Parnas, 1976; Bosatta and
Berendse, 1984), possibly in co-limitation with mineral N (Parnas,
1975; Berendse et al., 1987). For simplicity, here we neglect mineral
N immobilization, and focus on the effect of organic N availability
only.

From a mathematical point of view, we compute the C demand
depending on the available organic N as hDECðC=NÞBðC=NÞ�1

S , and
compare it with the larger flux ð1� rÞDEC that would be potentially
used for biomass growth. The difference between the two is C in
stoichiometric excess, which cannot be assimilated if ðC=NÞB is to
remain constant. For ðC=NÞB to be constant, a decoupling of C and N
decomposition is necessary, where organic N is preferentially
decomposed and assimilated, while C decomposition is slowed
(Parnas, 1975; Sinsabaugh and Moorhead, 1994). Similar to the
inhibition mechanisms discussed in Section 3.4.1, a factor 4ON is
thus defined to decrease the potential C decomposition to
hDECðC=NÞBðC=NÞ�1

S ,

4ON ¼
(

1; F � 0
hðC=NÞB
ð1�rÞðC=NÞS

; F < 0 : (11)

Fig. 12 shows how 4ON changes with substrate N content and
organic N assimilation efficiency. The decrease of 4ON is triggered
by lowerðC=NÞS, in contrast to 4MN (Eq. (9); Fig. 12), so that DEC is
reduced earlier along the ðC=NÞS gradient. Also, the lower h the
stronger the inhibition effect, because more N is routed towards the
mineral pool. Using the MIT scheme the organic N assimilation
efficiency is zero, so that 4ON ¼ 0 and microbial activity is
completely (and obviously unrealistically) halted. The few models
that employ 4ON either assume h ¼ 1 (Bosatta and Berendse, 1984),
or allow some mineral N immobilization (dashed arrow in Fig. 12;
Parnas, 1975; Berendse et al., 1987). This N-limitation scheme has
been seldom used in biogeochemical models, despite the fact that it
does not need additional parameters and that its performance
could be easily tested against the classical models that only
consider the effects of mineral N (Section 3.4.1).
Alternatively, one might assume that C overflow occurs in
response to limited organic N. The C overflow flux in this case is
computed following Eq. (10) with IMMmax ¼ 0, as discussed in
Section 3.4.1, or by changing the C use efficiency ð1� rÞ. Recently,
Manzoni et al. (2008a) showed how the C use efficiency of plant
detritus decomposers decreases with decreasing litter initial N
content in different ecosystems. This suggests that increased C
losses, possibly related to C-overflow mechanisms, might be
a widespread decomposer response to low-N substrates.

3.4.3. Stoichiometry of decomposers with variable ðC=NÞB
Some models assume that the decomposer biomass is not

strictly homeostatic and hence ðC=NÞB may change in time, in
response to nutrient availability or following microbial succession
during decomposition. Accordingly, they assume that ðC=NÞB can
vary in response to imbalanced C and N sources (Fig. 13, indicated
by CN; see details in Table A2). Two alternative schemes have been
implemented. The first is based on the idea that as soon as the C and
N decomposition fluxes are not suitably balanced, the elemental
composition of microbial biomass changes, resulting in turn in
altered mineralization and immobilization fluxes (Smith, 1979;
McGill et al., 1981; Knapp et al., 1983; Hunt et al., 1991; Korsaeth
et al., 2001). In the alternative scheme, mineral N controls ðC=NÞB
according to a negative feedback scheme. In this case, the altered
ðC=NÞB compensates the elemental imbalance by decreasing the
demand for the more limiting element (van Veen et al., 1984; Grant
et al., 1993; Parton et al., 1993; Del Grosso et al., 2001; McMurtrie
et al., 2001). Finally, some models combine flexible ðC=NÞB and
inhibition factors, leading to more complicated formulations (Hunt
et al., 1983; Paustian and Schnurer, 1987).



Fig. 13. Historic trends of the percentages of models using the different N-limitation
schemes (NLIM), including C-only models (CM). IND, no N-limitation; INH, inhibition
factor; CO, carbon losses in response to N-limitation; CN, variable microbial or
substrate C=N; MIX, multiple formulations are simultaneously used (see also Table A1;
details on the individual models are reported in Table A2).
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It should be noted that in general ðC=NÞB is only allowed to
fluctuate within a relatively restricted range of values (realistically
between about 5 and 15), so that the relatively small decomposer
biomass has only limited capacity to compensate for large fluctu-
ations in substrate C=N. For this reason, in most applications it is
reasonable to assume constant ðC=NÞB.

3.4.4. Historical evolution of N-limitation models
Fig. 13 summarizes the historic evolution of the different N-

limitation schemes (see also Table A2). The figure shows that the
number of models that neglect N dynamics (CM) has been
decreasing in time, while different formulations of N-limitation are
more frequently used. However, not all the N models include the
effects of mineral N-limitation, so that microbial activity and
decomposition are often independent of mineral N availability
(indicated by IND). Among the models considering N-limitation
effects, most use inhibition factors similar to 4MN and 4ON (INH),
others assume that nitrogen shortage increases the C=N ratios of
microbes or substrate (CN; see Section 3.4.3), while only fewer
recent approaches include C-overflow mechanisms (CO). The
choice of the microbial stoichiometry model, however, has impor-
tant consequences. If a model neglects the overflow mechanisms, it
may underestimate the heterotrophic respiration rate, while it
might overestimate microbial activity and decomposition rates,
when neglecting the inhibition mechanisms. To our knowledge, no
model accounts for both N inhibition and C-overflow mechanisms,
although it seems likely that they both occur in reality.
4. Nonlinearities and mineralization pathways
in relation to scale

In this section we discuss the relationships between decompo-
sition, mineralization and mineral N-limitation formulations in
relation to the spatial and temporal scales at which the reviewed
models are applied (Fig. 14) and in relation to the model class
(Fig. 15).

Given the complexity and hierarchical structure of the soil
system, it is natural that several scale-specific processes regulate
SOM dynamics (McGill, 1996). For example, decomposer–substrate
interactions result in fluctuations of microbial biomass under
constant environmental conditions only at fine scales, e.g., in the
highly active rhizosphere environment and at hourly-to-daily time
scales, as shown by Zelenev et al. (2000, 2006). On the contrary,
oscillations are not generally observed during long-term incuba-
tions of larger soil samples, where organic matter and microbial
biomass are homogeneously distributed (e.g., Whitmore, 1996b;
Petersen et al., 2005b). As these oscillating dynamics are better
described by nonlinear models (Manzoni and Porporato, 2007), it
seems important to choose the model formulation according to
the scale of interest. This has often not been the case in the
literature, as biogeochemical models with similar structure and
formulations have been used across scales with no or very little
modification.

Paustian (1994) pointed out that the question of whether
decomposition should be explicitly coupled with microbial biomass
dynamics may be dependent on the scale of interest. He suggested
that at yearly or longer time scales climatic factors predominate,
a fact that would justify neglecting the microbial dynamics at such
long time scales. Accordingly, simple linear decomposition functions
and fewer variables describing microbial biomass may be suitable at
long time scales, while nonlinear models and explicit description of
the biologic components may become necessary at short scales
(Schimel, 2001; Manzoni and Porporato, 2007). Simple models for
long-term analyses could be derived from more complex short-term
models by successive approximations. Similar considerations may be
drawn regarding spatial scales, that is, the smaller the scale, the more
detailed the microbial components and the description of their
nonlinear relationships with the substrates. We can thus hypothesize
that decomposition formulations could be ordered according to their
suitability to increasingly large (or long) scales starting from the
more nonlinear (NL, MM) to the linear and zero order ones (LIN,
CONS). As shown in Figs. 14a, b, and 15a, models developed for fine-
scale analyses (predominantly M class) preferentially employ highly
nonlinear decomposition formulations. On the contrary, most
biogeochemical models at landscape or larger spatial scales,
including global scale models (G), are linear. Most litter (L) and
ecosystem (E) models, typically interpreted at the daily-to-annual
time scale (Fig. 5), are also linear. These trends are in agreement with
the above hypothesis, suggesting a general consensus regarding the
effects of scale on the decomposition function.

Recently, Manzoni et al. (2008b) suggested that the N minerali-
zation parameterization also is scale-dependent. The DIR hypothesis
seems more suitable to describe dynamics at the microscopic scale,
while PAR and mixed (MIX) model schemes and the limit case, the
MIT pathway, capture the macroscopic N cycling patterns (Manzoni
et al., 2008b). In principle, we might also expect that more sophis-
ticated methods to compute N-limitation feedbacks may be needed
at fine scales, where nutrient availability may vary strongly in space
and time. Accordingly, carbon overflow (CO, Eq. (10)) or N-limitation
effects on microbial or substrate stoichiometry (CN, see Section
3.4.3) would be suitable at small scales, while the somewhat simpler
inhibition factors (INH, Eq. (9)) would suffice at larger scales. In long-
term studies, N-limitation for the microbial biomass might even be
neglected (IND), or C-only models (CM) could be used, because at
such scales positive net mineralization is predominant.

Despite these logical hypotheses, Fig. 14c and d respectively
shows the lack of correlation between mineralization pathways and
spatial and temporal scales, due to the widespread use of the DIR
scheme across scales. Similarly, Fig. 14e and f highlights a weak
correlation between the mineral N limitation scheme and scale,
with the exception of the complex CO and CN formulations,
predominantly used at fine scales (as hypothesized above). Most of
the global scale models are based on the DIR hypothesis (Fig. 15b)
and they typically do not model either N dynamics or N-limitation
effects (Fig. 15c). Litter decomposition models are often used at
scales comparable to the ecosystem models (Fig. 5) and both
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generally employ the DIR scheme as well. Less than 40% of models
in each class consider N-limitation effects (Fig. 15c), suggesting that
in most cases inorganic nutrients are only considered a product of
the decomposition process. Hence, it seems that no consensus
regarding the modeling of soil N cycling across scales and model
classes has been reached. The DIR scheme has been particularly
successful, although it may underestimate N immobilization in
lumped models at the soil-core (or larger) scale (Manzoni et al.,
2008b). Thus, when the DIR scheme is applied at these higher levels
of aggregation it needs to be complemented by more detailed
chemical characterization of the soil substrates and the corre-
sponding decomposers (multi-compartment approach) in order to
capture the N recycling between compartments of contrasting
nutrient concentration.

5. Future directions and conclusions

According to our database (Table A2), the number of soil C and N
models is increasing at a 6% annual rate (Fig. 16). Most new models
are improvements over earlier ones, leading to many similar model
structures and formulations. These mathematical features have
changed slowly in time (see Figs. 3, 7, 8, and 13). While this has
generally produced more robust and effective models (as shown by
model inter-comparisons and validation studies), on the other
hand, it may have hindered significant theoretical advances and
shifted attention from some important questions that have there-
fore remained unexplored. We thus conclude our review by dis-
cussing some of these theoretical gaps and suggesting how they
could be addressed by future modeling efforts.

A more mechanistic and scale-dependent description of
microbial biomass and activity had been advocated by Paustian
(1994) and McGill (1996). Since then, models have been using
increasingly detailed formulations of decomposer biomass and its
relationships with organic substrates and inorganic nutrients (Figs.
7 and 13), but further efforts in this direction are certainly neces-
sary. For example, characterizing of the level of microbial activity
through dedicated state variables, and not only the amount of
microbial biomass, is fundamental to describe transient flushes in



Fig. 15. Percentages of models in each model class (Fig. 5; Table 1A) using different decomposition (a), mineralization (b), and N-limitation formulations (c). DEC, MIN, and NLIM
formulations are shown from left to right in order of suitability to increasingly larger scales.
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Fig. 16. Temporal trend in the number of soil C and N models; the solid line is the
exponential least square regression of the data, indicating a 6% increase per year.
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response to environmental fluctuations (Bar et al., 2002; Schwin-
ning and Sala, 2004) or substrate supply (Blagodatsky and Richter,
1998). Similarly, explicitly including stoichiometric theory into soil
models at all scales is important to better link decomposer activity
and metabolism, nutrient availability, vegetation growth, and
climate dynamics (Sterner and Elser, 2002; Cherif and Loreau,
2007; Cleveland and Liptzin, 2007; Manzoni et al., 2008a; Sinsa-
baugh et al., 2008). Neglecting C overflow and respiratory pathways
that become important under N limiting conditions (Section 3.4)
may lead to underestimate the soil C efflux to the atmosphere, with
potential implications in estimating global-scale climate change
scenarios (Manzoni et al., 2008a). Within the context of properly
representing the biological degradation drivers, a shift is needed in
the way soil fauna is considered. Its role is ‘‘generally believed to be
one mainly of assisting in mechanical disintegration’’ (Smith, 1979,
p. 585), and such a viewpoint remains somehow paradigmatic
(Paustian, 1994; Smith et al., 1998), despite evidence that all the
elements of such food webs should be considered in their speci-
ficity (Beare et al., 1995; Osler and Sommerkorn, 2007). Very few
works have attempted a description of the whole soil food web
dynamics (Hunt et al., 1987; Hunt et al., 1991; Deruiter et al., 1993),
also because modeling a complete soil food web easily leads to
extremely complicated models, which tend to be site-specific and
difficult to calibrate. As a result, modelers have often fallen back on
the use of aggregated variables for soil biota and microbial biomass:
it is important however that the potential errors during these
aggregation exercises are quantified, to understand which



Table A1
Description of codes in Table A2. NA indicates processes that are not included in the
model or not clearly defined in the literature source.

Codes Description

CL Model class
M Soil microbiology, soil aggregate, and rhizosphere models
L Litter decomposition model
S Soil model with no dynamic vegetation components
E Coupled soil-plant dynamic model
G Coupled soil-plant-atmosphere model for global applications
SS Spatial scale
1 < 10�2 m
2 10�2 � 100 m
3 100 � 102 m
4 102 � 104 m
5 > 104 m
TS Temporal scale
1 < 100 days
2 100 � 101 days
3 101 � 102 days
4 102 � 103 days
5 > 103 days
PSD Phase-space dimension (Section 2)
MB Number of variables for decomposers (Section 2)
RESP Respiration model (Sections 3.1 and 3.4)
GRW Growth respiration
MNT Maintenance respiration
G&M Both growth and maintenance respiration
CO Respiration defined to compensate stoichiometric imbalances
DEC Decomposition model (Section 3.2)
CONS Constant rate
LIN Linear model with respect to CS (Eq. (4))
LINB Linear model with respect to CB

MULT Multiplicative model (Eq. (5))
MM Michaelis–Menten model (Eq. (3))
NL Other nonlinear or mixed formulations
MIN Mineralization scheme (Section 3.3)
DIR Direct hypothesis
MIT Mineralization–Immobilization Turnover
PAR Parallel hypothesis
MIX Other schemes with simultaneous mineralization and immobilization
SIMP Simplified model or regression equation (no microbial stoichiometry)
NLIM N-limitation model (Section 3.4)
CM C-only (or dry weight-only) models neglecting N dynamics
IND No N-limitation
INH Inhibition factors (Eq. (9) and (11))
CO Carbon overflow (Eq. (10))
CN N-limitation effects on microbial or substrate C=N (Section 3.4.3)
MIX Multiple N-limitation effects are considered
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functional characteristics of the biotic component need to be
explicitly maintained.

A second major gap is the lack of mechanistic representations of
small-scale processes. Most models describe soil biogeochemistry
at core-to-field spatial scales and daily-to-monthly time scales
(Fig. 4). Their mathematical formulations are mainly empirical and
not rigorously derived from biochemical and physical constraints at
the pore-scale, where the processes driving SOM degradation,
mineralization, and stabilization occur (Blanco-Canqui and Lal,
2004; Six et al., 2004). Similarly, accounting for spatial heteroge-
neity at the landscape-to-regional-scale is necessary to make
models suitable for global-scale applications (McGill, 1996).

Semi-empirical relationships are used to complement theoret-
ical equations and develop predictive models at the desired scale
(Del Grosso et al., 2001). While such an approach may effectively
account for the small-scale processes in specific cases, it cannot
remain purely empirical, if it is meant to provide the generality
needed for long-term projections under different conditions. One
way to proceed is by using individual-based models (Allison, 2005;
Ginovart et al., 2005; Masse et al., 2007), from which macroscopic
patterns may be inferred. Another way (frequently employed in
hydrology and fluid dynamics) is by developing coupled transport
and biological reaction equations accounting for physical hetero-
geneity, and biological, stoichiometric, and thermodynamic
constraints (e.g., Westerhoff et al., 1982). While stoichiometric
theory is already embedded in many soil biogeochemical models,
only sporadic attempts have been made to explicitly describe bio-
logical reactions in the physically and chemically heterogeneous
soil micro-environment, and derive kinetic equations valid at the
soil-core scale from mm-to-mm scale processes. The extremely large
number of complex biogeochemical and physical processes is
daunting (Young and Crawford, 2004; Ahuja et al., 2006) and has so
far discouraged more systematic endeavors at modeling biogeo-
chemical cycles based on first principles. For example, the existing
models of aggregate turnover that are based on first-order mass
transfer among aggregate classes do not attempt to mechanistically
describe such dynamics and the SOM–microbial–mineral soil
coupling (Plante et al., 2002; De Gryze et al., 2006). On the other
hand, more physically sound biogeochemical models at the pore-
scale are often based on aggregate functional units which do not
evolve in time, but only provide a particular micro-environment for
microbial processes (Arah and Smith, 1989; Leffelaar, 1993). Simi-
larly, models describing biologically and chemically active inter-
faces consider such physical discontinuities static in time (e.g., soil
pore, rhizosphere, and detritusphere interfaces; Toal et al. (2000),
Kuka et al. (2007), and Ingwersen et al. (2008)). As a result, physical
processes recognized to affect soil structural properties (e.g., tillage,
wetting-drying cycles, and aggregate turnover) are not included in
biogeochemical models although they likely affect C stabilization,
microbial function, and substrate, nutrient, and water redistribu-
tion (Sollins et al., 1996; Six et al., 2004; von Luetzow et al., 2008).

This tendency to neglect small-scale physical processes has
somewhat changed recently. Starting from probabilistic consider-
ations on enzyme–substrate interactions in heterogeneous envi-
ronments, Rothman and Forney (2007) derived a core-scale
decomposition equation for marine sediments, which has been
successfully applied to litter and SOM degradation (Forney and
Rothman, 2007). They found that when substrate diffusion is
limiting and microbial biomass can be assumed stationary,
a continuum of first order decomposition rates well captures the
long-term decomposition patterns, in agreement with earlier
studies (Carpenter, 1981; Bosatta and Ågren, 1985). Similar
approaches where both transport and biological reaction are
accounted for (e.g., Liu, 2007) would help understand under which
conditions and at which scales the decomposition equations should
be linear or nonlinear (discussed in Section 3.2), thus reconciling
these two different viewpoints.

As discussed throughout this review, the tendency of more
recent models towards more sophisticated (and generally more
mathematically complex) approaches is not always paralleled by
improved model performance or ability to interpret observed
patterns. Simple models based on physically and biologically based
variables and parameterizations often provide equal or better
insights in soil and litter dynamics than complex ones. Perhaps
a little bit paradoxically, we hope that by advocating a more
mechanistic representation of complex physical and biological
processes from first principles, we will end up with simpler and
more general, highly aggregated formulations, possibly leading to
analytically tractable models, as opposed to a large number (Fig. 16)
of specific and complicated models (Ågren and Bosatta, 1990).

To conclude, ‘‘further inquiry into the scale-dependence and
cross-scale adaptability of models is warranted’’ (McGill, 1996, p.
120). Scaling up pore-scale coupled biogeochemical and physical
dynamics to the scale typical of observations is the way to spur
novel modeling approaches and provide new insights into plant
residue and soil organic matter dynamics.



Table A2
Main features of the reviewed models (see Table A1 for code descriptions). When different model versions are described in the same source, the characteristics of each one are
given.

Model Reference CL SS TS PSD MB RESP DEC MIN NLIM Notes

– Salter and Green (1933) S 3 4 1 0 NA LIN SIMP CM-IND Simple C or N loss equations
– Nikiforoff (1936) S 3 4 1 0 NA LIN NA CM
– Jenny (1941) S 3 4 1 0 NA LIN SIMP IND
– Henin and Dupuis (1945) S 3 3 1 0 NA LIN NA CM
– Jenny et al. (1949) L 3 4 1 0 NA LIN NA CM
– Kirkham and Bartholomew

(1954)
S 2 2 2 0 NA CONS MIT IND 15N model

– Kirkham and Bartholomew
(1955)

S 2 2 2 0 NA LIN MIT IND 15N model

– Eriksson and Welander (1956) G 5 5 1 0 NA NL NA CM
– Craig (1957) G 5 5 1 0 NA LIN NA CM C isotope model
– Olson (1963) L 3 4 1 0 NA LIN NA CM
– Russell (1964) S 3 3 1 0 NA LIN SIMP IND
– Minderman (1968) L 3 4 1 0 NA LIN NA CM
– Stanford and Smith (1972) S 2 3 1 0 NA LIN-MULT SIMP IND N-only model
PWNEE Patten (1972) E 3 3 19 16 NA LIN SIMP IND Soil food web model
– Beek and Frissel (1973) S 3 2 11 2 GRW LIN MIT INH
ABISKO Bunnell and Dowding (1974) E 3 2 6 0 NA LIN NA CM
– Mehran and Tanji (1974) S 2 2 5 0 NA LIN SIMP IND
ABISKO II Bunnell and Scoullar (1975) E 3 2 9 0 NA LIN NA CM
– Harte and Levy (1975) E-

G
5 5 2–3 1 GRW MULT SIMP IND

– Parnas (1975) S 2 2 4 0 GRW MM MIX CN Mineral and organic N co-
limitation– Russell (1975) E 3 3 1 0 NA LIN SIMP IND

– Parnas (1976) M 1 1 2 0 NA MM NA IND Organic N control (Eq. (11))
ELM Hunt (1977), Reuss and Innis

(1977)
E 3 2 18 2 G&M LIN DIR INH

RothC Jenkinson and Rayner (1977) S 3 4 5 1 GRW LIN NA CM
– Aber et al. (1978) L 3 4 7 0 NA LIN SIMP IND
– Holland (1978) G 5 4 1 0 NA LIN NA CM
– O’Brien and Stout (1978) S 3 4 1 0 GRW LIN NA CM Continuous soil profile model
– Smith (1979) E 3 3 38 12 G&M MM MIX CN Includes P and K dynamics
– Bolin (1981) G 5 4 2 0 NA LIN NA CM 13C model
– Bosatta (1981) S 3 3 3 1 NA LIN PAR IND N-only model
– Carpenter (1981) S 2 3 N 0 NA LIN NA CM Continuum-quality model
– Emanuel et al. (1981) G 5 4 2 0 NA LIN NA CM
PHOENIX McGill et al. (1981) E 3 2 18 4 G&M NL DIR CN
PAPRAN Seligman and Van Keulen (1981) E 3 2 42 0 GRW NL MIT MIX
– Svirezhev and Tarko (1981) G 5 5 4 0 NA LIN NA CM
– van Veen and Paul (1981) L-

S
2 2–

4
5–
12

1 GRW LIN NA CM

– Bosatta and Staaf (1982) L 3 4 3 1 GRW LIN DIR IND
– Furniss et al., (1982) L 3 3 105 0 GRW LIN NA CM Litter cohort model
– Hunt et al. (1983) S 3 2 52 22 G&M NL DIR CN Includes P and S
– Knapp et al. (1983) S 2 1 7 4 G&M MULT MIT CN
NCSOIL Molina et al. (1983) S 2 2 7 2 GRW LIN DIR INH N fixation balances N-limitation
EPIC Williams et al. (1984), Jones et al.

(1984)
E 3 2 72 0 GRW NL MIT MIX Mineralization functions based

on Seligman and Van Keulen
(1981), stochastic climatic
forcing

– Bosatta and Berendse (1984) S 2 3 2 0 GRW MULT DIR CO Organic N control (Eq. (11))
– Janssen (1984) L 3 4 1 0 NA LIN NA CM
– Juma et al. (1984) S 2 3 1 0 NA CONS-NL SIMP IND N-only model
– Van veen et al. (1984) S 2 2 18 2 GRW LIN MIT CN
Q-model Bosatta and Ågren (1985) S 3 4 N 0 GRW LIN DIR IND Continuous quality model; CB is

assumed proportional to CS

– Chapman and Gray (1986) M 2 3 3 1 G&M LINB NA CM
– Deans et al. (1986) S 2 3 1–2 0 NA LIN SIMP IND N-only model
JABOWA Pastor and Post (1986) E 4 4 7 0 NA LIN MIX IND Cohort model
– Smith et al. (1986) S 2 2 3 1 G&M LINB MIT IND
– Addiscott and Whitmore (1987) S 3 2 3 0 NA CONS SIMP IND N-only model
– Andrén and Paustian (1987) L 3 2 1–2 0 NA CONS-LIN NA-

SIMP
CM-IND

– Balesdent (1987) S 3 4 5–7 0 NA LIN NA CM 14C model
– Berendse et al. (1987) L 3 4 5 1 GRW NL MIT IND
NCSOIL Hadas et al. (1987) S 2 2 7 2 GRW LIN DIR-

MIT
INH

– Hunt et al. (1987) S 3 3 18 15 GRW LINB DIR IND Soil food web model
SOILN Johnsson et al. (1987) E 3 2 9 0 GRW LIN DIR INH
CENTURY Parton et al. (1987) E 4 3 7 1 GRW LIN DIR IND
– Paustian and Schnurer (1987) M 1 1 7 4 G&M MM MIX MIX Fungal growth model
– Leffelaar (1988) M 1 1 5 2 G&M MM DIR IND Explicit soil aggregate dynamics

(continued on next page)
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Table A2 (continued )

Model Reference CL SS TS PSD MB RESP DEC MIN NLIM Notes

– Leffelaar and Wessel (1988) S 2 1 11 2 G&M MM DIR IND
CENTURY Parton et al. (1988) E 3 3 20 3 GRW LIN DIR IND P and S included; based on

Parton et al. (1987)
– Harvey (1989) G 5 5 1–3 0 NA LIN NA CM
– Robinson et al. (1989) M 1 3 4 2 GRW LIN DIR IND
Hurley Thornley and Verberne (1989) E 3 3 12 1 GRW NL MIX INH
Rothamsted Jenkinson (1990) S 3 3 4 1 GRW LIN NA CM Based on Jenkinson and Rayner

(1977)
Verberne Verberne et al. (1990) S 3 2 9 2 GRW LIN DIR IND Soil physical protection of OM
VEGIE Aber et al. (1991) E 3 4 10 0 GRW LIN DIR IND
Q-model Bosatta and Ågren (1991) S 3 4 N 0 GRW LIN DIR IND Continuous quality, cohort

model; P and S included; CBfCS

– Darrah (1991) M 1 1 4 1 G&M MM NA CM
DAISY Hansen et al. (1991) E 3 2 11 2 G&M LIN DIR IND
GEM Hunt et al. (1991) E 3 2 25 12 G&M NL MIX CN Based on McGill et al. (1981),

detailed soil food web
GENDEC Moorhead and Reynolds (1991) L 3 2 6 1 GRW LIN DIR INH
TEM Raich et al. (1991) G 5 3 4 0 NA LIN MIT IND
MBL-GEM Rastetter et al. (1991) E 3 4 5 0 GRW LIN MIT INH
ANIMO Rijtema and Kroes (1991) S 3 2 7 0 NA LIN DIR IND
FOREST-BGC Running and Gower (1991) G 3 4 5 0 NA LIN DIR IND
NLEAP Shaffer et al. (1991) E 3 2 5 0 NA LIN DIR CO
CERES Godwin and Jones (1992) E 3 2 10 0 GRW NL MIT INH
– Griffiths and Robinson (1992) M 1 3 4–5 2–

3
GRW LIN DIR IND

DNDC Li et al. (1992) S 3 1 15 2 GRW
(G&M)

LIN (MM) DIR
(NA)

INH
(IND)

Decomposition (denitrification)
submodels

SUNDIAL Bradbury et al. (1993) S 3 3 7 1 GRW LIN DIR INH Based on Jenkinson and Rayner
(1977)

G’DAY Comins and McMurtrie (1993) E 3 4 8 1 GRW LIN DIR IND Based on Parton et al. (1987)
– DeRuiter et al., (1993) S 3 4 19 17 GRW LINB DIR IND Soil food web model
Ecosys Grant et al. (1993) S 2 1 86 20 G&M MM DIR IND ðC=NÞB is controlled by organic C

and N availability
– Harte and Kinzig (1993) E 3 5 3–4 1 NA-CO NL MIT IND
FBM Kindermann et al. (1993) G 5 2 2 0 NA LIN NA CM
CENTURY Parton et al. (1993) E 4 3 20 4 GRW LIN DIR CN Based on Parton et al. (1987)
CASA Potter et al. (1993) G 5 3 18 2 GRW LIN DIR IND Based on Parton et al. (1987)
– Ryzhova (1993) E 3 4 2 0 GRW LIN NA CM
– Trumbore (1993) S 3 4 4 0 NA LIN NA CM 14C model
Q-model Bosatta and Ågren (1994) S 3 4 N N GRW LIN NA CM Continuum quality, cohort model
– Kersebaum and Richter (1994) S 2 2 7 2 G&M MM DIR CO
MEAD Sinsabaugh and Moorhead

(1994)
L 3 3 4 1 GRW NL NA IND Mass loss rate model based on

enzyme activity; P included
Q-model Bosatta and Ågren (1995) S 3 3 N N GRW LIN MIT CN Continuum quality
– Elzein and Balesdent (1995) S 3 4 3 0–

1
NA-GRW LIN NA CM Vertically explicit

DEMETER Foley (1995) G 5 5 5 0 GRW LIN NA CM
WHNSIM Huwe and Totsche (1995) E 3 2 6 0 NA LIN MIT IND Distributed soil and climatic

parameters
– Thornley et al. (1995) E 3 4 1 0 NA LIN NA IND N-only model; mineralization as

a delayed N transfer
NICCCE van Dam and van Breemen

(1995)
E 3 2 24 2 G&M NL PAR CN Vertically explicit

– Ågren and Bosatta (1996) E 3 5 2 0 GRW LIN DIR IND
Q-model Bosatta and Ågren (1996) S 3 4 N N GRW LIN DIR IND Vertically explicit; P, S included
SCM Panikov and Sizova (1996) S 2 1 3 2 G&M MM NA CM
– Saggar et al. (1996) S 3 4 3 1 MNT LIN NA CM 14C model
8SV Schwinning and Parsons (1996) E 3 4 2 0 NA LIN SIMP IND Based on Thornley et al. (1995)
– Whitmore (1996b) S 2 3 1 1 GRW MULT NA CM CBfCS

– Whitmore (1996a) S 2 3 2 1 NA LIN NA CM
ICBM Andrén and Kätterer (1997) S 3 4 2 0 GRW LIN NA CM
SOMM Chertov and Komarov (1997) S 2 3 18 0 MNT LIN DIR IND P, K, Mg, Ca included
DocMod Currie and Aber (1997) S 4 3 13 1 GRW LIN MIT IND
Hybrid Friend et al. (1997) G 3 2 23 6 GRW LIN DIR CN Based on Parton et al. (1993)
– Hassink and Whitmore (1997) S 2 4 3–4 1 GRW LIN NA CM Based on van Veen et al. (1984)

and Jenkinson (1990); nonlinear
SOM adsorption kinetics

– Tateno and Chapin (1997) E 3 4 2 0 NA LIN DIR IND
– Van Wensem et al. (1997) S 2 2 7 3 G&M NL NA IND
– Zheng et al. (1997) S 3 5 4 3 GRW LIN-MULT NA CM Soil food web model
NICA Blagodatsky and Richter (1998) S 2 1 7 3 GRW MM DIR MIX
NCSOIL Hadas et al. (1998) S 2 2 6 3 GRW MM MIT CO RO by polysaccharide production
– Loreau (1998) E 3 5 3 1 NA MULT DIR IND N-only model
FLUAZ Mary et al. (1998) S 2 2 4–5 1 NA CONS MIT-

MIX
IND 15N model
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INCA Whitehead et al. (1998) S 4 2 3 0 NA CONS SIMP IND Distributed catchment scale
model

TRACE Currie et al. (1999) E 3 3 21 0 GRW LIN MIT IND Also 15N model; based on Currie
and Aber (1997)

RISK-N Gusman and Marino (1999) S 4 3 6 0 NA LIN SIMP IND
– Henriksen and Breland (1999) S 2 2 15 6 GRW LIN DIR MIX
TCS Luo and Reynolds (1999) E 3 4 19 4 GRW LIN DIR IND Based on Parton et al. (1987)
– Zheng et al. (1999) E 3 4 4 2 GRW CONS-MULT DIR IND Soil food web model
LEACHN Acutis et al. (2000) E 4 2 9 0 GRW LIN DIR IND Distributed soil hydraulic

parameters; stochastic rainfall
NITS-

SHETRAN
Birkinshaw and Ewen (2000) S 3 2 9 0 GRW LIN DIR IND

IBIS Kucharik et al. (2000) G 5 2 19 2 GRW LIN DIR IND Based on Verberne et al. (1990)
DNDC Li et al. (2000) E 3 1 44 12 G&M NL DIR INH Based on Li et al. (1992)
– Toal et al. (2000) M 1 1 3 1 G&M MM NA CM
BACWAVE Zelenev et al. (2000) M 1 1 2 1 GRW MM NA CM
– Brenner et al. (2001) E 3 5 2 0 NA LIN SIMP IND
– Daufresne and Loreau (2001) E 3 5 2 1 MNT LIN DIR INH
DAYCENT Del Grosso et al. (2001) E 3 2 41 8 GRW LIN DIR CN Based on Parton et al. (1987)
PDM Frolking et al. (2001) S 3 5 1 0 NA NL NA CM Cohort model
CANTIS Garnier et al. (2001) S 3 2 15 3 GRW MM PAR INH
SOMKO Gignoux et al. (2001) S 3 2 9 2 G&M NL DIR INH Cohort model
ecosys Grant (2001) E 4 1 298 180 G&M MM DIR CN P included
ICBM Kätterer and Andrén (2001) S 2–

3
2–
4

2–4 0–
1

GRW LIN DIR IND

SOILN-NO Korsaeth et al. (2001) E 2 2 10 2 GRW LIN DIR CN Based on Johnsson et al. (1987)
– Loreau (2001) E 3 5 11 5 NA LIN-MULT DIR IND
G’DAY McMurtrie et al. (2001) E 3 4 14 1 GRW LIN MIT CN Based on Parton et al. (1993)
TerraFlux Neff and Asner (2001) E 3 2 8 2 GRW LIN NA CM Based on Parton et al. (1987)
– Nicolardot et al. (2001) S 2 2 3 1 G&M LIN DIR IND
CREEP Rosenbloom et al. (2001) E 4 5 1 0 NA LIN NA CM
– Thornley and Cannell (2001) S 3 4–

5
2–4 0 GRW LIN NA CM

– Bar et al. (2002) M 2 2 3 2 NA NA NA CM Biologic crust model, water
limitation only

CenW Kirschbaum and Paul (2002) E 3 2 16 1 GRW LIN DIR IND Based on Parton et al. (1993)
– Baisden and Amundson (2003) E 3 5 3 0 CO LIN DIR IND
TRACE Currie (2003) E 3 3 21 0 GRW LIN MIT IND Also 15N model; energy content

and fluxes included; based on
Currie et al. (1999)

DyDOC Michalzik et al. (2003) S 3 2 31 0 GRW LIN NA CM
TAO Pansu and Thuries (2003) S 2 2 5 1 NA LIN PAR IND
– Porporato et al. (2003) S 3 2 7 1 GRW MULT DIR INH Stochastic rainfall
– Sanderman et al. (2003) S 3 4 1 0 NA LIN NA CM
– Schimel and Weintraub (2003) S 2 2 6 2 G&M MULT-MM DIR CO
LPJ Sitch et al. (2003) G 4 3 4 0 GRW LIN NA CM
– Walter et al. (2003) S 4 4 1 0 NA LIN NA CM Stochastic landscape features
– Bruun et al. (2004) S 3 5 1–3 0 GRW LIN NA CM Age distribution computation
– Foereid and Yearsley (2004) M 1–

2
2 4–5 1–

2
GRW MM DIR IND

– Kravchenko et al. (2004) M 1 1 4 2 GRW MM NA INH
– Moore et al. (2004) E 3 5 4 2 GRW MULT NA CM Litter food web model
MOMOS Pansu et al. (2004) S 2 2 5–6 1 GRW-

MNT-
G&M

LIN DIR IND One model version based on
Jenkinson and Rayner (1977)

EnzModel Allison (2005) M 1 1 13 7 MNT MM DIR IND Individual-based bacterial model
– Fontaine and Barot (2005) E 3 5 2–5 1–

2
MNT LINB NA-

DIR
CM-INH

INDISIM-S Ginovart et al. (2005) M 1 1 13 4 G&M NL MIX IND Individual-based bacterial model
– Kuijper et al. (2005) L 3 4 9 5 GRW MM DIR IND Litter food web model
Yasso Liski et al. (2005) S 3 4 7 0 NA LIN NA CM
IBIS Liu et al. (2005) G 4 2 19 2 GRW LIN DIR CN Based on Verberne et al. (1990)
– Long and Or (2005) M 1 1 4 2 GRW MM NA CM Individual-based bacterial model
– Moore et al. (2005) L 3 4 6 5 GRW NL NA CM Litter food web model
CN-SIM Petersen et al. (2005a,b) S 2–

3
2–
3

6–8 2 G&M LIN NA-
DIR

CM-INH Based on Hansen et al. (1991)

– Botter et al. (2006) S 4 2 3 0 GRW CONS SIMP IND Based on Porporato et al. (2003)
GDM Moorhead and Sinsabaugh

(2006)
L 3 3 6� 1–

3
MNT-
G&M

MM MIT INH

– Neill and Gignoux (2006) S 2 2 2 1 G&M NL PAR IND
– Raynaud et al. (2006) M 1 2 20 6 G&M MULT MIX CO
– Tonitto and Powell (2006) E 3 4 2 1 NA NA NA INH Spatially explicit; N-only model
BACWAVE-

WEB
Zelenev et al. (2006) S 2 1 26 11 GRW MULT MIX CN Food web model

(continued on next page)
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– Cherif and Loreau (2007) M 2 5 3 1 GRW MULT DIR INH
– Forney and Rothman (2007) L-

S
3 4 N 0 NA LIN NA CM kS;LIN is a random variable from

a log-uniform distribution
CIPS Kuka et al. (2007) S 2 2 5 1 GRW LIN NA CM
– Maggi and Porporato (2007) S 3 1 2 1 NA NA NA NA Water limitation only
MIOR Masse et al. (2007) S 1 2 10 2 MNT LINB NA IND Individual-based bacterial model
– Manzoni and Porporato (2007) S 2 2 4 1 GRW LIN-MULT-

MM
PAR INH

MOMOS-6 Pansu et al. (2007) S 2 2 6 1 MNT LIN DIR IND Texture-dependent respiration
– Stewart et al. (2007) S 3 4 1–2 0 NA LIN-NL NA CM SOM adsorption kinetics
– Wang et al. (2007) E 3 4 9 0 GRW LIN PAR INH Coupled C, N, P model
SPACSYS Wu et al. (2007) E 3 2 15 1 G&M LIN DIR IND
FLDM Zhang et al. (2007) L 3 4 6 0 NA LIN DIR IND
– Botter et al. (2008) S 3 2 2 0 GRW CONS SIMP IND Stochastic rainfall and

distributed nitrate transport
parameters

CEM d’Annunzio et al. (2008) L 3 4 N N GRW LIN DIR IND Based on Ågren and Bosatta
(1996)

NICA Ingwersen et al. (2008) M 1 1 15 6 GRW MM DIR MIX Based on Blagodatsky and
Richter (1998)

Roth PC-1 Jenkinson and Coleman (2008) S 3 3 5 1 GRW LIN NA CM Based on Jenkinson (1990)
– Kumada et al. (2008) L 3 4 5 0 NA LIN NA CM
TOUGHREACT-

N
Maggi et al. (2008) S 2 2 27 5 GRW MM NA IND

– Manzoni et al. (2008a) L 3 4 2 0 GRW NA DIR NA
– Manzoni et al. (2008b) S 2 2 3 0 GRW LIN-MULT PAR INH CBfCS

MOMOS-6 Pansu et al. (2008) E 3 2 6 1 MNT LIN NA CM
– Roy et al. (2008) L 3 3 4 2 GRW MULT NA CM
AMG Saffih-Hdadi and Mary (2008) S 3 4 2 0 GRW LIN NA CM
– Cherif and Loreau (2009) E 3 5 3 1 GRW NA NA IND Food web model
– Manzoni et al. (under review) L 3 4 3 0 GRW NA DIR NA Based on Manzoni et al. (2008a);

P included
– Wang et al. (2009) S 3 2 7 1 GRW MULT PAR INH Based on Porporato et al. (2003)
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Appendix A

We selected biogeochemical models according to different
criteria, ranging from the number of citations to the originality of
their approaches to describe soil processes. Models have been
searched by keywords in web databases (mainly the ISI Web of
Knowledge), or in referenced publications, so that not only journal
articles, but also book chapters, model user guides, and meeting or
workshop proceedings have been used. We selected publications
where a new model was proposed, or where an existing one was
applied at different scales or in markedly different conditions with
respect to the original work (e.g., one-compartment linear models
applied to SOM or litter, at core or field scales). Different versions of
the same model have been reviewed individually when significant
modifications to the original version had been proposed. Table A1
explains the codes used in Table A2 to characterize the models.

We determined the model scales as the spatial and temporal
dimensions at which the model is interpreted and applied. These
dimensions, if not explicitly reported, have been inferred from the
typical resolution of the data in input (e.g., climatic variables), the
temporal frequency and level of aggregation of calibration and
validation datasets (e.g., laboratory soil incubations, SS¼ 2; average
mass loss from litterbags left in different locations at a given site,
SS¼ 3), and the scales reported in the figures.

The total number of variables in each model has been
computed as the sum of the variables describing the litter layer
and the ones describing an individual mineral soil layer. Similarly
the spatial dimension in continuous-in-space models (Toal et al.,
2000; Tonitto and Powell, 2006; Maggi and Porporato, 2007) has
not been considered. In this way, we only accounted for the
actual interacting biogeochemical variables independently of the
spatial discretization scheme. This allowed us to compare lum-
ped and spatially explicit models (Fig. 2). Since partial and delay
differential equations can be considered infinite-order ordinary
differential equations, they also have an infinite-dimensional
phase-space, as reported in Table A2 for the continuum-quality
models (Ågren and Bosatta, 1996) and few other cases. In cohort
models, we only accounted for variables in an individual age
class, again allowing the comparison with standard compartment
models. Moreover, quantities that are proportional to other
variables (e.g., N content when the C=N ratio of that compart-
ment is assumed constant) are not counted as state variables
because no differential equations are needed to describe their
dynamics and therefore they do not contribute to the system
phase space.

Microbial respiration (RESP) and mineralization (MIN) are
defined when microbial biomass metabolism and stoichiometry are
at least implicitly considered in the model. In other cases, these
fields have been classified as NA.

All the data reported in Table A2 have been gathered with the
highest possible accuracy and objectivity. Nonetheless, many data
could only be inferred by interpreting the equations, the model
descriptions, and the figures reported in the original publications,
thus necessarily introducing a subjective component in the
dataset.
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