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A B S T R A C T
The interannual variability of net sea–air CO2 flux for the period 1982–2007 is obtained from a diagnostic model
using empirical subannual relationships between climatological CO2 partial pressure in surface seawater (pCO2SW)
and sea surface temperature (SST), along with interannual changes in SST and wind speed. These optimum subannual
relationships show significantly better correlation between pCO2SW and SST than the previous relationships using fixed
monthly boundaries. Our diagnostic model yields an interannual variability of ±0.14 PgC yr−1 (1σ ) with a 26-year mean
of −1.48 PgC yr−1. The greatest interannual variability is found in the Equatorial Pacific, and significant variability is
also found at northern and southern high-latitudes, depending in part, on which wind product is used. We provide an
assessment of our approach by applying it to pCO2SW and SST output from a prognostic global biogeochemical ocean
model. Our diagnostic approach applied to this model output shows reasonable agreement with the prognostic model
net sea–air CO2 fluxes in terms of magnitude and phase of variability, suggesting that our diagnostic approach can
capture much of the observed variability on regional to global scale. A notable exception is that our approach shows
significantly less variability than the prognostic model in the Southern Ocean.

1. Introduction

The estimated annual CO2 emissions attributable to anthro-
pogenic activities are not balanced, on a year to year basis, with
the rates of atmospheric CO2 increase and long-term estimates
of net CO2 uptake of land and ocean (Sarmiento and Gruber,
2002). The annual imbalance estimated for each year since 1960
ranges from +3 to −2 PgC yr−1 (1 PgC = 1015 g C) (Le Quéré
et al., 2009). These imbalances are as large as the magnitude of
annual ocean uptake rate of 2 PgC yr−1, and may be attributed
partially to the errors in the estimated magnitude and variability
of the CO2 sinks as well as to differences in response time of each
CO2 reservoir. Three-dimensional (3-D) global biogeochemical
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ocean circulation models (GCMs) generally yield small interan-
nual variability ranging from ±0.2 to 0.35 PgC yr−1 (1σ ) (e.g.
Le Quéré et al., 2003; Obata and Kitamura, 2003; McKinley
et al., 2004; Doney et al., 2009a).

The partitioning of CO2 uptake change between the land and
the ocean has been determined with atmospheric records of CO2

concentration, δ13CO2, and O2/N2 (e.g. Francey et al., 1995;
Keeling et al., 1995; Bender et al., 2005; Patra et al., 2006;
Rayner et al., 2008). In these studies, the combined CO2 up-
take of land and ocean calculated from the difference between
total CO2 emissions and the observed increase in atmospheric
CO2 concentrations are separated by changes in atmospheric
δ13CO2 and O2/N2 as proxies for CO2 uptake by land biosphere.
In contrast to the GCMs, these top-down approaches show rela-
tively high magnitude of interannual changes in the ocean carbon
reservoir. Alden et al. (this issue) suggest that the large variabil-
ity of the ocean CO2 sink obtained from atmospheric inversion
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method using δ13CO2 could be caused by uncertainty in isotope
disequilibrium fluxes and poorly quantified variability of iso-
topic fractionation in land plants. A joint atmosphere–ocean
inversion method using atmospheric and oceanic observational
constraints has been developed to more accurately estimate CO2

fluxes in the Earth System (Jacobson et al., 2007). Results from
recent 3-D atmospheric inversion models with long-term atmo-
spheric sampling networks (Bousquet et al., 2000; Rödenbeck
et al., 2003) suggest lower interannual variability in sea–air CO2

exchange, more in agreement with those predicted by empirical
methods (Lee et al., 1998; Park et al., 2006) and GCMs (e.g. Le
Quéré et al., 2000, 2003; McKinley et al., 2004; Wetzel et al.,
2005; Doney et al., 2009a). However, empirical approaches and
ocean GCMs have shown interannual variability at the lower
end of the reported range (±0.2 to 0.5 PgC yr−1). Key unre-
solved issues are which regions significantly contribute to the
global ocean flux variability and how large-scale climate reor-
ganizations such as the El Niño–Southern Oscillation (ENSO)
and the North Atlantic Oscillation (NAO) affect variability (Le
Quéré et al., 2003; McKinley et al., 2004, 2006; Peylin et al.,
2005). The ocean carbon database is too sparse, except for a
few regions, to quantify sea–air CO2 flux variability on the re-
quired spatial and temporal scales from CO2 observations alone,
even with the recent increases of CO2 partial pressure (pCO2)
measurements on moorings and ships of opportunity (SOOP).

Lee et al. (1998) developed a diagnostic model based on the
Takahashi et al. (1997) monthly climatology of surface water and
atmospheric partial pressure differences (�pCO2 = pCO2SW −
pCO2AIR) and empirical algorithms between pCO2SW and sea
surface temperature (SST), and inferred an interannual vari-
ability of ±0.2 PgC yr−1 (1σ ). Park et al. (2006) presented a
more detailed description of this diagnostic model and evalu-
ated uncertainties with time-series observations. This work is
a follow-up to the aforementioned publications by Lee et al.
(1998) and Park et al. (2006) with the following important im-
provements. The work is extended to cover 26 years for which
consistent high-resolution SST and wind products are avail-
able. The new sea–air CO2 flux climatology of Takahashi et al.
(2007, 2009a,b) is used as the basis for the optimum suban-
nual pCO2SW–SST relationships. The subannual pCO2SW–SST
relationships have been changed from three fixed time pe-
riod relationships, spanning January–April, May–August and
September–December, to grid cell specific variable time period
relationships to define the subannual pCO2SW and SST trends.
The effect of wind speed products on CO2 flux variability is also
considered.

There remain several assumptions in this method that can-
not be validated on first principles. This approach assumes that
subannual pCO2SW–SST relationships derived from the �pCO2

climatology for each 4◦ × 5◦ grid cell can be applied to interan-
nual SST anomalies to predict interannual variations in pCO2SW.
This means that for every grid cell variations in pCO2SW can be
captured with changes in SST and that these derived suban-

nual linear trends are also applicable to determine pCO2SW on
interannual time scales. This diagnostic model cannot capture
long-term trends unrelated to trends in SST such as those caused
by increasing rate of release of fossil-fuel CO2. The assumptions
are not easy to verify over the global ocean due to a dearth of
measurements. The comparison presented here with two ocean
time-series stations and particularly from applying the approach
to the output of a GCM suggests that the approach captures a
significant fraction (≈70%) of the variability in sea–air CO2

fluxes.
A validation is performed by applying our approach to the

output of a GCM. The model output of pCO2SW is the result
of the major biogeochemical processes and transport that occur
in the ocean (Doney et al., 2009a). Optimum subannual rela-
tionships are created from the model pCO2SW and SST in each
grid cell in the same manner as was done with the �pCO2 cli-
matology of Takahashi et al. (2009a). They are then applied to
the SST anomalies produced by the model. This provides an
important diagnostic on how well our method reproduces the
interannual changes in �pCO2 on global scale. Much of the
regional interannual variability determined with our approach
appears related to the large-scale climate reorganizations asso-
ciated with the ENSO in the Equatorial Pacific and the NAO in
the North Atlantic.

2. Calculation method

The monthly mean net sea–air CO2 flux (Fym) for each 4◦ (lat-
itude) × 5◦ (longitude) grid cell for an individual year other
than 2000 is estimated from the global �pCO2 climatology
and SST anomalies compared to the SST for reference year
2000 (�SSTym–2000m) using subannual pCO2SW–SST relation-
ships [(δpCO2SW/δSST)2000m] and gas transfer velocity in the
following manner:

Fym = kymK0ym{[pCO2SW 2000m + (δpCO2SW/δSST)2000m

×�SSTym−2000m] − pCO2AIR 2000m}, (1)

or

Fym = kym K0ym{[�pCO2 2000m + (δpCO2SW/δSST)2000m

×�SSTym−2000m]}, (2)

where subscript ym is the year (y) and month (m) during the
time period of 1982–2007, and subscript 2000m refers to the
month in 2000. The determination of (δpCO2SW/δSST)2000m is
described in detail later. The solubility of CO2, K0ym, is de-
termined from monthly SST and monthly climatological sea
surface salinity (SSS) estimates using the solubility equations of
Weiss (1974). Monthly mean SST data for the period 1982–2007
are obtained from National Oceanographic and Atmospheric
Administration (NOAA) Optimum Interpolation (OI) Sea Sur-
face Temperature V2 product (http://www.cdc.noaa.gov/data/
gridded/data.noaa.oisst.v2.html). The monthly 1◦ × 1◦ SST data
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are averaged to a 4◦ × 5◦ grid. The SSS data are obtained from
National Oceanographic Data Center (NODC) World Ocean
Data 1998 as provided in the �pCO2 climatology of Takahashi
et al. (2009a). Positive Fym values indicate that CO2 is emitted
from the ocean, whereas negative values indicate that the ocean
is a CO2 sink.

The monthly gas transfer velocity, kym for each grid cell is
estimated from the second moment of monthly mean wind speed
and the gas transfer coefficient

kym = 0.22 × <U10ym
2 > (Scym/660)−0.5, (3)

where <U10ym
2> is the second moment of the wind at 10 m above

sea surface representing the variance of the 6-hourly wind speeds
for each grid cell over ym, and Sc is Schmidt number. The propor-
tionality coefficient of 0.22 for <U10

2> is derived from the coef-
ficient of 0.26 for monthly mean wind speed (<U10>) and global
mean <U10

2>/<U10>
2 of 1.2 for ice-free oceans (0.26/1.2 =

0.22) used by Takahashi et al. (2009a). The coefficient of 0.26
differs from that of 0.39 proposed by Wanninkhof (1992) and is
based on an updated global gas transfer velocity based on the par-
titioning of the global bomb-14C inventory between atmosphere
and ocean utilizing a global ocean circulation model (Sweeney
et al., 2007). A different wind speed product is used as well in
determining the coefficient compared to the original estimate of
Wanninkhof (1992). For global gas exchange–wind speed rela-
tionships the gas transfer coefficient is intrinsically tied to the
wind speed (Naegler et al., 2006; Sweeney et al., 2007), and
0.26 is appropriate for the winds used here. The monthly mean
second moments are from the 6-hour National Centers for En-
vironmental Prediction/Department of Energy (NCEP/DOE) re-
analysis 2 product on a Gaussian grid (http://www.cdc.noaa.gov/
data/gridded/data.ncep.reanalysis2.html), henceforth called
NCEP-II.

In the polar regions where sea-ice forms seasonally, we cor-
rect the sea–air CO2 flux by assuming no flux through sea-ice.
The monthly fractional sea-ice cover values for each 4◦ × 5◦

grid cell are obtained from the NCEP/DOE reanalysis 2 sur-
face ice concentration fields (ftp://ftp.cdc.noaa.gov/Datasets/
ncep.reanalysis2/gaussian_grid/). The original data are re-
gridded to a 4◦ × 5◦ grid and averaged for each month in each
grid cell. Following the convention in Takahashi et al. (2009a),
each grid cell is regarded as a sea-ice-free area when the ice
cover value is less than 0.1. In the case that the ice cover value
is over 0.9, we assume that each grid cell has 10% ice-free open
water (ice cover value = 0.9) because of leads and polynyas
where CO2 is exchanged across the sea–air interface (Takahashi
et al., 2009a).

As shown in eq. 2, the net sea–air CO2 flux can be expressed
in terms of �pCO2 and the variation of pCO2SW arising from
the SST anomaly relative to 2000. This means that the �pCO2

fields of Takahashi et al. (2009a,b) can be used for this work.
The approach implicitly assumes that pCO2SW increases at the
same rate as the atmosphere over the time, modulated by SST

anomalies. Takahashi et al. (2009a) show that over broad regions,
this is a reasonable assumption but regional deviations in the
increase in pCO2SW not closely correlated with SST have been
observed (see, e.g. Schuster and Watson, 2007; Metzl, 2009).

2.1. The new �pCO2 climatology for the reference year
2000

The monthly mean global �pCO2 climatology for non-El Niño
conditions was produced from approximately 3 million mea-
surements of pCO2SW obtained from 1970 to 2007 and overlying
atmospheric pCO2 values adjusted to the reference year 2000
(Takahashi et al., 2009a) (Version: October 2009 is available
at http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/
pages/air_sea_flux_2009.html). The observational density of
the new climatology has significantly increased and covers
more geographical areas, particularly in the sub-polar Southern
Ocean, relative to previous versions [see fig. 1a in Takahashi
et al. (2009a)]. The database used in this climatology is about
three times larger than the previous climatology (Takahashi
et al., 2002). The increased data allow for a better resolution
of the seasonal trends and are believed to have fewer artefacts
caused by interpolation. This allows for a more reliable
estimate of the base state and determination of the subannual
pCO2SW–SST relationships. We use the version of the �pCO2

climatology provided in the website listed earlier. This is an
update of the data used in Takahashi et al. (2009a) corrected for
some minor errors.

Climatological SST values (monthly mean NOAA OI SST for
the period of 1981–2006 without the El Niño months) used here
for deriving subannual pCO2SW–SST relationships differ from
those based on the SST measurements concurrently made with
the pCO2SW in the climatology (Takahashi et al., 2009a). This
is due to the relative sparsity of observational SST data in each
grid cell of the pCO2SW climatology compared to the NOAA OI
SST product and use of different smoothing and interpolation
functions in the NOAA OI SST product. Although these two sets
of SST are closely in agreement for most of the cells, the SSTs in
some cells, particularly in regions with high SST gradients differ
as much as 7 ◦C. Nevertheless, the mean difference between the
concurrent SST measurements and the NOAA OI SST product
is small (+0.08 ± 1.4 ◦C, n = 21,108; Takahashi et al., 2009a),
and hence the more complete NOAA OI SST products may be
treated as consistent with the �pCO2 values in most of the grid
cells.

2.2. Subannual relationships between pCO2SW and SST,
(δpCO2SW/δSST)2000m

A critical part of the analysis is the determination of the trends
of pCO2SW and SST for each grid cell of the monthly climatol-
ogy. To avoid spurious values of (δpCO2SW/δSST)2000m that can
arise by determining the trend from month to month, we deter-
mine a linear relationship of pCO2SW and SST over seasonal or
longer time periods, and use the slopes of these linear segmented
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relationships along with the SST anomaly (�SSTym–2000m), for
the months that are included in each relationship, to determine
the anomaly in pCO2SW (see eqs 1 and 2). As shown in the ex-
amples in Fig. 1, the relationships are discontinuous, leading to,
sometimes, abrupt changes in seasonal response of pCO2SW to
SST anomalies.

The relationships between pCO2SW and SST for each grid cell
are different than used in Lee et al. (1998) and Park et al. (2006).
The new method called the optimum subannual pCO2SW–SST
approach is applied to each 4◦ × 5◦ grid cell, except for the
central and eastern Equatorial Pacific. In this method we do not
use fixed monthly boundaries as used in the previous analy-
ses but rather pick boundaries based on an optimum segmented
linear fit to pCO2SW and SST data. Least squares linear fits of
monthly pCO2SW and SST values are determined for at least 3
consecutive months according to the annual patterns of pCO2SW

and SST (Figs 1e–h). The subannual relationships are created
from 3 to 12 consecutive months, which are determined in the
following iterative fashion (Park et al., 2010). First, for each

grid cell, a linear fit is determined using 12 months of data.
If the resulting correlation coefficient (R2) is over 0.9, we ac-
cept this single pCO2SW–SST relationship. If not, we determine
subannual trends using time windows of at least 3 consecutive
months. We use the following criteria to choose the time win-
dows and create the corresponding set of optimum relationships
for each grid cell: (1) all correlation coefficients exceed 0.5; (2)
maximum mean value of correlation coefficients; (3) minimum
number of relationships and maximum number of months in
each relationship. When relationships have similar correlation
coefficients (3) takes precedence over (2). If for a particular grid
cell we cannot find a set of subannual relationships where all
R2 values exceed 0.5, we select subannual boundaries such that
more relationships have R2 greater than 0.5 and the set has a
higher mean value of R2. Although the selections are somewhat
subjective, the comparison below with fixed boundaries shows
the significantly improved fits in the approach used here.

For the central and eastern Equatorial Pacific (6◦N–10◦S and
80◦W–165◦E), we use new empirical pCO2SW–SST equations
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Fig. 1. Comparison of (a–d) three fixed
seasonal and (e–h) optimum subannual
pCO2SW–SST relationships for grid cells
centred on 32◦N, 177.5◦W; 40◦N, 162.5◦E;
52◦S, 162.5◦E and 48◦N, 152.5◦E. The
numbers correspond to the months of the
year. The solid circles and solid lines show
Season 1 for three fixed seasonal
relationships and Subannual Period 1
(labelled with ‘SAP 1’) for optimum
subannual relationships; solid squares and
dotted lines are for Season 2 and Subannual
Period 2; solid triangles and dashed lines are
for Season 3 and Subannual Period 3 and the
open diamonds and dash-dotted lines depict
Subannual Period 4 for the subannual
relationships.
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derived from multiyear observations that were collected on board
SOOP and research ships from 1979 to 2008 (R. A. Feely, unpub-
lished data). The drivers of interannual variability in this region
are different from those of seasonal variability, and extensive
pCO2SW observations are available for the period of investiga-
tion covering seven El Niño and five La Niña periods. Therefore,
unique pCO2SW–SST equations for three different time periods
(1979–1989, 1990–mid-1998 and mid-1998–2008) are used in
this study. These equations are updated and extended through
2008 from those of Feely et al. (2006). Mean atmospheric pCO2

values for estimating �pCO2 in each grid cell of the central and
eastern Equatorial Pacific are calculated from mole fractions of
atmospheric CO2 obtained from the National Oceanic and At-
mospheric Administration/Earth System Research Laboratory
(NOAA/ESRL) (GLOBALVIEW-CO2, 2009).

3. Results and discussion

3.1. Rationale behind the pCO2SW–SST relationships

Surface pCO2SW changes with physical chemical processes
(changes in temperature, salinity and inorganic carbon speci-
ation), biological process (photosynthesis and oxidation), trans-
port process (mixing and advection of water masses with differ-
ent CO2 concentrations) and sea–air CO2 flux (e.g. Takahashi
et al., 2002). These processes are often related to changes in
SST and this feature is used to create the empirical relation-
ships we use here. Although the pCO2SW shows strong seasonal
and regional correlations with SST over much of the world’s
ocean, their patterns differ for different regions and seasons (e.g.
Takahashi et al., 1993; Lefèvre and Taylor, 2002; Feely et al.,
2006). For example, in subtropical oceans where biological pro-
duction is low, the pCO2SW is primarily regulated by SST, and
hence increases as water warms from winter to summer, exhibit-
ing a positive slope in the pCO2SW–SST regression (Figs 1e and
S1). In contrast, in subpolar oceans, deep waters rich in CO2

mix upward to the surface regime as a result of winter cooling
of surface waters, thus causing high pCO2SW in spite of colder
SST. In the spring, pCO2SW is reduced due to photosynthetic
utilization of CO2, although spring warming counteracts the bi-
ological effects partially. Thus, pCO2SW tends to decrease with
increasing SST, exhibiting a negative slope as seen in examples
in Figs 1g and h.

In the previous studies, the seasonal pCO2SW–SST relation-
ships were determined from monthly pCO2SW and SST val-
ues for three fixed time periods: January through April (Sea-
son 1), May through August (Season 2) and September through
December (Season 3) (Lee et al., 1998; Park et al., 2006). Low
correlations between pCO2SW and SST were found in several
regions and seasons in those studies particularly in the South
Indian and Southern oceans. When three fixed seasonal relation-
ships are derived from the updated monthly pCO2SW climatology
(Takahashi et al., 2009a), 62% of total grid cells for Season 1

show correlation coefficients less than 0.5 (Figs 1c and d). When
the optimum subannual approach is used for each grid cell, only
1% of total grid cells show correlation coefficients less than
0.5 between SST and pCO2SW (Fig. S2). The mean correlation
coefficient for all the grid cells and all subannual periods is
0.83 ± 0.14 indicating that the low correlations in the previ-
ous approach are largely due to applying the criterion of fixed
monthly boundaries. This suggests that SST change can reason-
ably characterize pCO2SW variability in most grid cells of the
climatology on subannual scales.

Examples of comparisons between three fixed seasonal rela-
tionships and the optimum subannual relationships for specific
grid cells are illustrated in Fig. 1. For the optimum subannual
relationships, about half of the total grid cells have three suban-
nual relationships, but only 20% of them have the same monthly
ranges as the previous seasonal relationships with the fixed
monthly boundaries. Twenty-four percent of the grid cells have
two subannual relationships. Eighteen percent of the grid cells
have a single pCO2SW–SST relationship, mainly in the north-
ern subtropical regions. Only 7% of total grid cells have four
subannual relationships. At high latitude, 10 grid cells show no
meaningful pCO2SW–SST relationships because there are no ap-
preciable temporal variations of climatological pCO2SW or SST.
Global distribution of optimum subannual relationships for each
month is shown in Supporting Information (Fig. S1).

The effect of this updated procedure for creating subannual
pCO2SW–SST relationships on �pCO2 estimation differs for
each grid cell. The grid cells that have low correlation coef-
ficients for relationships with the fixed monthly boundaries and
with larger interannual SST variations show the greatest changes
of interannual variability in annual mean �pCO2 (Fig. 2). Fifty-
five percent of total grid cells show increase of interannual vari-
ability in net sea–air CO2 fluxes and 30% of them have lower
variability compared to the old procedure using fixed relation-
ships (Fig. S3). However, the interannual variability of global
sea–air CO2 fluxes estimated from the two relationships are
the same (0.14 PgC yr−1; 1σ of annual global net sea–air CO2

fluxes). This is because in the new scheme there is more inter-
regional compensation that damps the global interannual vari-
ability. CO2 fluxes estimated from optimum subannual relation-
ships show 65% larger variability in the northern high-latitude
and 15% larger variability in the subtropics compared to fluxes
obtained from relationships with the fixed monthly boundaries
(Table S1).

3.2. Effect of wind speed product

Wind speed directly controls the magnitude of sea–air CO2

flux for a given �pCO2 (eq. 1), and temporal and spatial
variabilities in wind speed contribute to variability in net sea–air
CO2 fluxes. To estimate the impact of different wind speed prod-
ucts on the interannual variability of CO2 fluxes, we compare
results using the NCEP-II product with results using a new
cross-calibrated, multiplatform (CCMP) ocean surface wind
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Fig. 2. Comparison of annual mean �pCO2 values estimated from
three fixed seasonal and optimum subannual pCO2SW–SST
relationships in grid cells centred on 40◦N, 162.5◦E (a), 52◦S, 162.5◦E
(b) and 48◦N, 152.5◦E (c). The corresponding pCO2SW–SST
relationships used are shown in Figs 1b–d and f–h.

velocity product for the 20-year period from 1988 to 2007
(Ardizzone et al., 2009). The CCMP wind speed product is
based on multiple input data sources including three types
of microwave radiometer sensors and scatterometers, to gen-
erate a wind speed product with less spatial smoothing (see
http://podaac.jpl.nasa.gov/DATA_CATALOG/ccmpinfo.html).

The <U10> and <U10
2> values are 8.1 m s−1 and 83.8 m2 s−2

for the NCEP-II wind and 7.4 m s−1 and 67.2 m2 s−2, for the
CCMP wind, and the products show different regional distribu-
tions (Also see, Wallcraft et al., 2009 for a comparison of satellite
winds and winds obtained from numerical weather products).
Because the coefficient of proportionality in the gas transfer

velocity–wind speed relationship ‘a’, k = a<U10
2>, obtained

from global14C ocean inventory depends on wind speed prod-
uct (Naegler et al., 2006), we recalculate a coefficient value of
0.27 for the second moment of CCMP wind speeds. This coef-
ficient is obtained from the ratio of the global average second
moments of the CCMP and NCEP-II products multiplied by the
proportionality coefficient of 0.22 used with the NCEP-II wind
product.

Global mean sea–air CO2 flux values for the period over which
both wind speed products are available (1988–2007) are −1.49 ±
0.14 PgC yr−1 (1σ ) for the NCEP-II wind product and −1.29 ±
0.14 PgC yr−1 (1σ ) for the CCMP wind product (Fig. 3a). Thus,
even after a 20% reduction in the proportionality coefficient
to account for differences in global mean second moment of
wind speeds, the NCEP-II wind speed product yields a global
net sea–air CO2 flux 16% higher than the CCMP wind speed
product. This is attributed to regional differences in the wind
products. The CCMP wind speeds are lower than the NCEP-II
winds at mid- and high-latitudes that are predominantly CO2
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NCEP-II (solid line) and CCMP (dashed line) wind products.
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sink regions. The CCMP winds are higher in the tropical areas,
which are generally sources of CO2 to the atmosphere. Higher
CO2 efflux in the tropics and lower oceanic CO2 influx in the
higher latitudes using the CCMP wind product lead to the lower
global net sea–air CO2 flux (Fig. 3b).

The variability relative to the global mean CO2 flux using
the CCMP wind product is 20% higher. The regional patterns
of CO2 flux variability are also different (Fig. 3c). Predominant
differences are found in the Equatorial Pacific, and differences
are also observed in the mid-latitude and northern high-latitude
oceans. Selection of wind speed product significantly impacts
not only the estimate of the global sea–air CO2 flux but also its
interannual variability.

3.3. Interannual variability of global net sea–air
CO2 fluxes

The 26-year mean regional CO2 fluxes and their variability are
presented in Table 1. The variability is expressed as a standard

deviation (1σ ) of annual net sea–air CO2 fluxes. The Equato-
rial Pacific shows the largest interannual CO2 flux variability
(18%) relative to the mean efflux 0.44 PgC yr−1 for the pe-
riod 1982–2007. The Southern Ocean and regions at northern
high-latitudes show significant variability of 11% and 10%, re-
spectively, compared to the 26-year mean.

The global net sea–air CO2 fluxes show a strong correlation
with the ENSO cycle. Higher oceanic CO2 uptakes (negative
anomalies) occur during the El Niño periods (Fig. 4). Our anal-
ysis shows that the interannual variability of global net sea–air
CO2 flux is ±0.14 PgC yr−1 (1σ ) for the period 1982–2007.
This value is smaller than the variability previously estimated in
Lee et al. (1998) and Park et al. (2006), largely due to the differ-
ence of proportionality coefficient used in gas transfer velocity
calculation and the different wind speeds (U10). The relative
interannual variations compared to the global mean net sea–air
CO2 flux values are comparable since the net global uptake in
the previous works is larger as well.

Table 1. Mean net sea–air CO2 fluxes and variability (1σ ) estimated from our diagnostic model for the period of 1982–2007

Mean (PgC yr−1) Variabilitya (PgC yr−1) Mean (mol C m−2 yr−1) Variability (mol C m−2 yr−1) Area [1012 (m2)]

EPOb 0.44 0.08 (18%)c 1.07 0.19 33.96
(Sub)-tropics −0.87 0.07 (8%) −0.37 0.03 197.97
High-North −0.52 0.05 (10%) −1.69 0.17 25.60
Southern Ocean −0.53 0.06 (11%) −0.64 0.07 68.77
Globe −1.48 0.14 (9%) −0.38 0.04 326.30

aVariability is expressed as a standard deviation (1σ ) of annual net sea–air CO2 fluxes.
bEPO, the Equatorial Pacific Ocean (10◦N–10◦S and 80◦W–135◦E); (Sub)-tropics, subtropics and tropics (42◦N–42◦S) except the EPO;
High-North, northern high-latitude oceans poleward of 42◦N, and Southern Ocean (>42◦S).
cThe percentage of CO2 variability relative to the regional 26-year mean annual CO2 flux.
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Fig. 5. (a) Sea–air CO2 flux map for
reference year 2000. Negative values mean
net oceanic CO2 uptake. (b) Magnitude of
interannual sea–air CO2 flux variability. The
magnitude of interannual variability is
expressed as a standard deviation (1σ ) of the
annual net sea–air CO2 fluxes in each grid
cell.

Regionally, the eastern Equatorial Pacific and the SE Pacific
off the western coast of South America show large interannual
variability closely connected to the ENSO cycle as detailed later
(Figs 4 and 5). The high-latitude North Atlantic (north of 50◦N;
Fig. 5), a region of large CO2 uptake, also shows large interan-
nual variability due to large SST anomalies and strong subannual
trends between pCO2SW and SST. The Indian Ocean shows rela-
tively low interannual variability despite interannual changes in
the seasonal upwelling due to year-to-year changes in Southwest
Monsoon winds. This is because the region directly impacted by
the strong Southwest Monsoon winds is relatively small, and
there is little variability in non-upwelling seasons and regions.
The sea–air CO2 flux in the Southern Ocean is a function of sig-
nificant drawdown of surface pCO2SW by biological productivity
in summer and release of CO2 due to upwelling of deep water
rich in CO2 in winter. Grid cells showing high interannual vari-
ability near 60◦S (red colour in Fig. 5b) correspond to the grid
cells located along the edge of the seasonal sea-ice field that ex-
perience CO2 effluxes in August [see fig. 15b in Takahashi et al.
(2009a)]. The pCO2SW–SST relationships are strongly negative,
which combined with large interannual SST anomalies leads to
large interannual variability in sea–air CO2 fluxes.

Long-term trends in regional sea–air CO2 fluxes are suggested
by our diagnostic approach (Fig. 4). These trends are caused by
long-term trends in SST, because we assume that �pCO2 only
changes by surface ocean processes related to SST variations

(eq. 2). Increase in oceanic CO2 uptake in northern high-latitude
oceans of −0.05 PgC decade−1 (grey colour in Fig. 4) is related
to long-term increase of SST in the North Atlantic (>42◦N) and
predominant negative pCO2SW–SST relationships in this region.
Recent observational and model studies highlight that trends of
CO2 fluxes are caused by climate-induced physical changes not
necessarily correlated with SST (Le Quéré et al., 2007; Schuster
and Watson, 2007; Lovenduski et al., 2008). Thus, our approach
for diagnosing interannual variability of CO2 fluxes will not
adequately capture decadal and much longer time scale trends
of CO2 fluxes. Even with long-term trends in SST, it is not clear
that subannual regressions are appropriate estimates of the trend
in �pCO2.

3.4. Correlation between CO2 fluxes and large-scale
climate reorganizations

Changes in natural modes of atmosphere–ocean coupled vari-
ability, such as the ENSO, NAO and Southern Annular Mode
(SAM) cause large variations in climate and weather over much
of the globe on interannual and longer time scales. They also
have striking impact on oceanic variability through associated
changes in heat content, water circulation and winds that could
affect �pCO2 and sea–air CO2 exchange. The impact of these
climate modes on sea–air CO2 fluxes is of particular interest
to determine if our approach of using subannual regressions of
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pCO2SW and SST to estimate interannual variability can cap-
ture changes in sea–air CO2 fluxes caused by these multi-annual
climate modes.

3.4.1. The El Niño–Southern Oscillation. ENSO is an oscil-
lation of the ocean–atmosphere system in the tropical Pacific
that affects weather around the globe. It is often characterized
by changes of SST in the eastern and central Equatorial Pacific
(Trenberth, 1997). In normal, non-El Niño conditions, high CO2

efflux occurs in the central and eastern Equatorial Pacific due to
the upwelling of CO2-enriched cold subsurface water by diver-
gence due the trade winds (Feely et al., 2002, 2006). In contrast,
during El Niños, the easterly trade winds are weakened, leading
to decrease in upwelling and an increase of SST. A considerable
reduction in outgassing of CO2 is observed during the El Niño
periods (e.g. Feely et al., 2006).

The estimated sea–air CO2 fluxes in the Equatorial Pa-
cific show a strong correlation with ENSO events. The global
anomaly caused by reduced CO2 efflux to the atmosphere is re-
inforced by CO2 uptake in the (Sub)-tropics and the Southern
Ocean during El Niño periods (Fig. 4). The combined increase
in the extratropical sink (negative flux anomalies) is of similar
magnitude to the Equatorial Pacific source decrease. For in-
stance, the average decrease in efflux in the Equatorial Pacific
for the El Niño of 1997 and 1998 period (May 1997–May 1998)
is 0.17 PgC and the increases in uptake in the (Sub)-tropics and
the Southern Ocean are 0.10 and 0.08 PgC, respectively. Inten-
sification of oceanic sink areas outside the Equatorial Pacific
during the El Niño periods has also been observed in the sea–air
CO2 fluxes estimated from atmospheric CO2 inverse modelling
(Patra et al., 2005; Rayner et al., 2008). Overall, CO2 flux vari-
ability derived by the ENSO cycle dominates global interannual
variability (Fig. 4).

3.4.2. The North Atlantic Oscillation. The NAO is often de-
fined in terms of a winter index (December–March) of sea level
pressure difference between Iceland and Azores because the
NAO is most pronounced in amplitude and areal coverage dur-
ing winter (Hurrell et al., 2003). The NAO exerts a substantial
influence on temperature, precipitation, storms and ecosystems
of the North Atlantic and surrounding continents. During the
positive phase of the NAO, an enhanced gradient in sea level
pressure strengthens surface westerly winds over the subpolar
gyre. This leads to deeper mixing and a decrease in SST in the
subpolar region, and an increase of SST in the western subtrop-
ics (Marshall et al., 2001). In the negative and neutral phases,
weakened and changed circulations lead to a subpolar warming
and subtropical cooling in SST.

For our modelled fluxes from 30◦N to 70◦N in the North
Atlantic, there is a strong positive correlation (r = 0.54, P <

0.01) between CO2 fluxes and NAO index with a 1-year time
lag. An even better correlation of 0.70 is shown in Fig. 6 when
the fluxes are detrended by removing the mean increase of CO2

uptake over the three decades. In the positive phase of the NAO,
oceanic CO2 uptake decreases, and in the negative phase of the
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NAO, CO2 fluxes into the ocean increase in the subtropics and
subpolar gyre (Fig. 6).

Our diagnostic model shows predominantly negative
pCO2SW–SST relationships in the subpolar North Atlantic and
positive relationships in the subtropics. The SST changes asso-
ciated with the NAO reinforce the CO2 fluxes in these gyres and
lead to the strong correlation with the NAO index. This positive
correlation of CO2 uptake increase is also shown in an atmo-
spheric CO2 inversion (Patra et al., 2005) and a biogeochemical
general circulation model (Ullman et al., 2009). Ullman et al.
(2009) shows an increase of North Atlantic CO2 sink during the
transition period from positive NAO to neutral NAO over mid-
1990s to mid-2000s. They attribute this to substantial declines in
subpolar gyre convection and vertical inorganic carbon supply
related to the phase of the NAO.

3.4.3. The Southern Annular Mode. The SAM is the prin-
cipal mode of atmospheric forcing in the Southern Ocean and
defined as the difference in mean sea level pressure between
40◦S and 65◦S (Marshall, 2003). The SAM describes the rela-
tive atmospheric anomalies at southern mid- and high-latitudes.
In positive phase of SAM, sub-polar westerly winds strengthen,
leading to surface ocean cooling and increase of upwelling at
higher latitudes. Several studies report the connection between
the trend in SAM and change in the Southern Ocean sea–air
CO2 flux (Le Quéré et al., 2007; Lovenduski et al., 2008; Metzl,
2009). The Southern Ocean CO2 sink has been weakened with
the recent positive trend of SAM due to increase of outgassing
with higher winds in their studies. However, our diagnostic ap-
proach shows no significant correlation (P > 0.05) between
sea–air CO2 fluxes and SAM index in the Southern Ocean. This
may be due to that variability of �pCO2 in this region is not
closely related to SST variation. The validation study of our
approach using the output of a GCM also suggests that our
empirical approach has limitations in the Southern Ocean.
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3.5. Assessment of our empirical approach

At local scale, we use time-series measurements made at the
Bermuda Atlantic Time Series Study (BATS) and Hawaii Ocean
Time Series (HOT) to assess if the subannual pCO2SW–SST
relationships vary from year-to-year at the sites, and to compare
fluxes derived from our diagnostic model to those observed at
the sites. At regional scale, we compare against a 5-year pCO2SW

record in the North Atlantic from a single SOOP that suggests
large interannual changes in the North Atlantic CO2 flux along
the transect (Watson et al., 2009). For a global assessment of our
method, we apply the empirical method to the SST and pCO2SW

output of a global biogeochemical ocean general circulation
model and compare the results with the CO2 fluxes from the
model.

3.5.1. Comparison with local observations. The 16-year
time-series of surface pCO2SW values from BATS (31◦50′N,
64◦10′W) and HOT (22◦45′N, 158◦00′W), in the western
North Atlantic subtropical gyre and the subtropical North Pa-
cific, respectively, are calculated from total dissolved inorganic
carbon and total alkalinity data (BATS: http://bats.bios.edu/
bats_form_bottle.html, HOT: http://hahana.soest.hawaii.edu/
hot/hot-dogs/bextraction.html). These time-series data are not
included in the Takahashi et al. (2009a) pCO2SW climatology,
because the climatology only uses measured pCO2SW data.

The 4◦ × 5◦ grid cell where BATS is located has a sin-
gle pCO2SW–SST relationship for an entire year in our di-
agnostic model. The derived pCO2SW–SST relationships from
observations at BATS are fairly consistent with our value
(Fig. 7a). The 15-year mean of our modelled flux of −1.17 ±
0.16 mol C m−2 yr−1 (1σ ) is also in good agreement
with measured sea–air CO2 fluxes at BATS of −1.18 ±
0.22 mol C m−2 yr−1 (1σ ) (Fig. 8a). Changes in modelled CO2

fluxes are in phase with those in observations except for the
periods of 1995–1997 and 2004–2006, but the magnitude of
variability predicted by our empirical method is 30% lower than
that of the observations.

Two optimum subannual pCO2SW–SST relationships are de-
rived from pCO2SW climatology in the grid cell containing the
HOT site. One relationship covers wintertime from October to
February and the other is from March to September. The yearly
March–September relationships determined from measurements
at the HOT site are in broad agreement with our relationship
(Fig. 7b). However, for the winter season the observed rela-
tionships from the HOT data show a large degree of scatter and
typically have a larger slope than that estimated from the pCO2SW

climatology. The 16-year average of the CO2 fluxes at HOT is
−0.62 ± 0.20 mol C m−2 yr−1 (1σ ), which is in good agreement
with our modelled CO2 flux of −0.57 ± 0.11 mol C m−2 yr−1

(1σ ) (Fig. 8b). Variations in modelled CO2 fluxes are in phase
with those determined from observations except for the peri-
ods of 1998–1999 and 2003–2004. Our modelled variability is
significantly lower (45%) than the observed value.
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Fig. 7. Comparisons between measured (open bars) and modelled
(dashed lines) pCO2SW–SST relationships (δpCO2SW/δSST) at the
BATS (a) and HOT (b) sites.

Overall, our diagnostic model agrees in magnitude of the av-
erage flux with observations but underestimates interannual vari-
ability of sea–air CO2 fluxes in the grid cells including BATS
and HOT sites, similar to the results for the previous diagnostic
model studies (Lee et al., 1998; Park et al., 2006). Large dif-
ferences in particular years cause a lower correlation in phase
between modelled CO2 fluxes and observations for the entire
period (r = 0.27, P > 0.05). The differences with observations
must be due to changes in physical and biological processes
that are not strongly correlated with SST anomalies. Substantial
interannual variations in nitrogen fixation levels and significant
SSS changes from variations of evaporation and precipitation
and lateral transport of high salinity water are observed at HOT
(Dore et al., 2003, 2008; Keeling et al., 2004). These biological
and chemical factors cause variations in pCO2SW unrelated to
SST anomalies that are not accounted for in our model. The
difference in scale between the single time-series point and the
4◦ × 5◦ grid cell probably also plays a role. CO2 flux variability
induced by mesoscale eddies observed at two stations (Bates,

Tellus 62B (2010), 5



362 G.-H. PARK ET AL.

(a) BATS

N
e
t 
C

O
2
 f
lu

x
 (

m
o
l 
m

-2
 y

r-1
)

-2.0

-1.5

-1.0

-0.5

0.0

(b) HOT

Year

N
e
t 
C

O
2 

fl
u
x
 (

m
o
l 
m

-2
 y

r-1
)

-2.0

-1.5

-1.0

-0.5

0.0

Observations

This study

91     93 95      97     99      01     03      05     07

91     93 95      97     99      01     03      05     07
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HOT (b) sites. Negative values are CO2 fluxes into the ocean.

2001; Dore et al., 2008) are not captured by our method. This
likely contributes to the lower variability shown by our diagnos-
tic model for the BATS area in spite of good correspondence
in the pCO2SW–SST relationships between model and observa-
tions. Thus, the diagnostic approach using 4◦ × 5◦ grid scale
climatological mean values representing a time-space average
over the box area does not completely capture the interannual
variability in CO2 fluxes at time-series stations affected by the
changes due to local (sub-grid scale) biological and physical
processes not closely related to SST. Moreover, sub-grid scale
SST variability is not captured by the diagnostic approach.

Our approach also does not reproduce the large interannual
variations in CO2 fluxes calculated from SOOP data diagonally
crossing the North Atlantic from the Caribbean to the England
during the period of 2002–2007 (Watson et al., 2009). The ob-
servations show a change in uptake from 0.39 mol C m−2 yr−1

in 2002 to a maximum uptake of 0.95 mol C m−2 yr−1 in 2005
and a decreasing trend from then on. Our results for the over-
lapping grid cells show the same trend from 2003 to 2007 as the
observations but with a much smaller magnitude (Fig. 9).

3.5.2. Validation of our approach using a global biogeo-
chemical ocean model. Because there are only limited time-
series observations to validate our approach, the veracity of this
empirical model was tested using the output of a 3-D biogeo-
chemical ocean general circulation model (GCM). Model out-
puts including �pCO2, pCO2SW and SST are obtained from a
multi-decade hindcast simulation (1982–2006) conducted with
the Community Climate System Model including an ocean
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Fig. 9. Comparison between modelled net sea–air CO2 fluxes (filled
bars) and observations estimated from data obtained from a SOOP line
between the Caribbean and England (open bars) for the period of
2002–2007. The observed fluxes are calculated from gas transfer
velocity–wind speed relationship of Nightingale et al. (2000) and in
spatial resolution of 5◦ latitude × 5◦ longitude grid that are slightly
different from those used in this study. For the comparison, the
over-lapping grid cells are selected.

biological–chemical module, the Biogeochemical Elemental
Cycle model (Doney et al., 2009a,b). The model output is re-
gridded to the same spatial grid (4◦ × 5◦) as the global �pCO2

climatology. In this GCM, pCO2SW values are computed from
the model prognostic variables, total dissolved inorganic carbon,
total alkalinity, SST and SSS, using a full seawater carbonate
thermodynamic code.

Subannual pCO2SW–SST relationships are derived from year
2000 model pCO2SW and SST data in the same way as was
done using the �pCO2 climatology of Takahashi et al. (2009a).
The mean correlation coefficient and standard deviation of the
pCO2SW–SST relationships derived from the GCM output for all
the grid cells is 0.89 ± 0.13, similar to that of 0.83 ± 0.14 of our
empirical approach using the �pCO2 climatology. Global net
sea–air CO2 fluxes for the period of 1982–2006 are estimated
from these subannual relationships with model SST anomalies
and monthly NCEP-II wind speed data. In the central and east-
ern Equatorial Pacific (6◦N–10◦S and 80◦W–165◦E), the same
empirical pCO2SW–SST equations derived from in situ measure-
ments are used as in our empirical approach using observations.
The global sea–air CO2 fluxes are also calculated directly from
the �pCO2 produced by the GCM and monthly NCEP-II wind
speeds.

Figure 10a shows the comparison of anomalies in global net
sea–air CO2 fluxes between the GCM output (PROG GCM)
and our diagnostic approach applied to the GCM output (DIAG
GCM). They show overall good agreement in terms of phase, but
there are significant differences in global CO2 fluxes for several
years (1986–1987, 1997, 2003–2006). Except for those years,
our diagnostic approach applied to GCM output reproduces in-
terannual variability in global sea–air CO2 fluxes with similar
magnitude and sign as the prognostic GCM results (Fig. 10b).
The 25-year global mean sea–air CO2 flux and its interannual
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Fig. 10. (a) Comparison of global net sea–air CO2 flux anomalies
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labelled with ‘PROG GCM’) and our diagnostic approach applied to
the GCM pCO2SW data for year 2000 (solid line with solid circles
labelled with ‘DIAG GCM’). The dotted line labelled with ‘DIAG
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relationships based on �pCO2 climatology (Takahashi et al., 2009a).
This is the same as the black line in Fig. 4, except that the time series is
shorter here. (b) Correlation of global CO2 flux anomalies between the
DIAG GCM and PROG GCM. The dotted line shows the regression
with slope of 1. Open circles indicate the periods from 1986–1987,
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variability are −1.33 ± 0.17 PgC yr−1 (1σ ) for the prognostic
GCM output compared to −1.28 ± 0.14 PgC yr−1 (1σ ) for our
diagnostic approach applied to the GCM output (Table 2). The
23% lower interannual variability using the empirical approach
applied to the GCM output is attributed to a few specific regions
(Fig. 11). The largest difference is found in the Southern Ocean.
The prognostic GCM output shows large interannual variabil-
ity in the latitude band between 40◦S and 60◦S (Fig. 11). Our
estimates using optimum subannual pCO2SW–SST relationships
obtained from GCM output and SST anomalies accounts for only
half of interannual variability of model output in the Southern
Ocean (±0.09 PgC yr−1) (Fig. 12d; Table 2). Many grid cells in
the Southern Ocean show low correlations (P > 0.05) in annual Ta
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Fig. 11. Global distributions of interannual
variability magnitude estimated from (a) the
GCM output (PROG GCM) and (b) our
diagnostic approach applied to the GCM
pCO2SW data (DIAG GCM). The magnitude
of interannual variability is expressed as a
standard deviation (1σ ) of the annual net
sea–air CO2 fluxes in each grid cell.
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Fig. 12. Regional comparisons between the interannual CO2 flux variability of the GCM output (dashed line with open squares labelled with
‘PROG GCM’) and our diagnostic approach applied to the GCM pCO2SW data (solid line with solid circles labelled with ‘DIAG GCM’). The
25-year mean sea–air CO2 flux and variability for each region are presented in Table 2.

net sea–air CO2 fluxes between our diagnostic approach applied
to the GCM output and the prognostic GCM output (Fig. S4)
indicating that �pCO2 variability in the Southern Ocean in the
model is driven by factors not directly related to SST.

Sea–air CO2 fluxes estimated from the empirical
pCO2SW–SST equations applied to GCM SST in the central and
eastern Equatorial Pacific agree well with prognostic GCM out-
puts in terms of both phase and magnitude (Figs 12a and S4) as
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was noted in a similar comparison by Doney et al. (2009a). The
results obtained from our approach in northern high-latitude
oceans also show overall good agreement with GCM output
fluxes (Fig. 12c; Table 2). However, there are differences in the
patterns of variability at the sub-basin scale. For the prognostic
model output, the western North Pacific shows larger interan-
nual variability than in the surrounding areas, while the eastern
North Pacific has larger variability for our diagnostic approach
applied to the GCM output (Fig. 11). At high latitudes in the
North Atlantic, our diagnostic approach applied to the GCM
output shows large interannual variability over the entire region
but the prognostic GCM output only shows large variability in
the western part (Fig. 11). The variability in annual net sea–air
CO2 fluxes reproduced by our diagnostic approach are generally
in phase with the prognostic GCM output in the Atlantic Ocean
(Fig. S4). In the subtropical and tropical oceans, our approach
applied to the GCM output has about 30% higher magnitude of
variability in CO2 fluxes compared to the prognostic GCM out-
put. There are large differences between the two approaches for
the period of 2003–2006 (Fig. 10a). The difference during this
time is mainly caused by smaller CO2 uptake in the subtropical
and Southern oceans by our diagnostic approach (Figs 12b and
d). During the El Niño periods of 1986–1987 and 1997, our diag-
nostic approach applied to the GCM output exhibits much larger
negative global flux anomalies (net ocean uptake) than that for
the prognostic GCM output (Fig. 10a). The different model CO2

flux anomaly curves are quite similar in the Equatorial Pacific
(Fig. 12a), and the discrepancy between the prognostic GCM
output and the diagnostic approach during these time periods
arises in the extratropics, in particular the Southern Ocean (Fig.
12d). These differences for the specific periods contribute to the
lower correlation in global net sea–air CO2 fluxes as well as in
regional fluxes of the subtropical and Southern oceans (Table 2).

The GCM flux output (PROG GCM) and our diagnostic ap-
proach applied to the GCM output (DIAG GCM) are compared
with the global net sea–air CO2 flux anomalies based on �pCO2

climatology and our diagnostic approach (DIAG CLIM) in Fig.
10a. The approaches generally agree in terms of phase, except
for the period of 1987–1989. During this transition period from
El Niño to La Niña, when global CO2 fluxes into the ocean de-
crease in DIAG GCM and DIAG CLIM while the PROG GCM
shows nearly constant positive CO2 flux anomaly (Fig. 10a).

Significant differences are observed when comparing the in-
fluence of NAO variability on the CO2 fluxes from the GCM with
that of our approach using �pCO2 climatology. In an analysis
of the GCM output, Thomas et al. (2008) found a significant
correlation of sea–air CO2 flux with the NAO index only for
the western subpolar gyre. However, their correlation shows the
opposite phase with our result using �pCO2 climatology and
SST anomalies. In the positive phase of the NAO index, the
GCM shows increase in CO2 uptake while our approach shows
the opposite (Fig. 6). This is because our diagnostic model only
accounts for changes related to SST while the GCM includes

other processes controlling pCO2SW that are not related to SST
variations (Doney et al., 2009a). Thomas et al. (2008) explained
this correlation with North Atlantic Current (NAC) transport-
ing water with low CO2 concentration into the region. Although
several studies suggest that variability of oceanic CO2 uptake in
the North Atlantic is related to the NAO, the phase, location and
magnitude and even direction of CO2 fluxes related with this
climate mode differ greatly (Corbière et al., 2007; Schuster and
Watson, 2007; Thomas et al., 2008; Schuster et al., 2009; Ullman
et al. 2009). Continued basin-wide observations are warranted
to resolve these discrepancies.

The mechanisms driving the interannual variability in net
sea–air CO2 flux simulated by the GCM vary by region (Doney
et al., 2009a). Changes in circulation are a dominant control on
variability in the Equatorial Pacific, high northern oceans and
Southern Ocean. In subtropics and tropical Atlantic, physical
chemical processes are dominant. The variation of dust depo-
sition is also key factor causing large interannual variability in
CO2 fluxes in the western North Pacific and the Southern Ocean
in the model, accounting for up to 50% of total regional CO2

flux variability. Iron supply to high nitrate and low chlorophyll
(HNLC) regions through atmospheric dust deposition down-
wind of desert source regions encourages biological production,
which in turn reduces pCO2SW and increases net oceanic CO2

uptake. Enhanced productivity by dust deposition will not be
captured by our empirical approach. The ability of our approach
to capture much of the variability shown in the GCM suggests
that it has appreciable skill on global scale. However, there are
also differences that show up when applying our method to a
GCM, clearly showing that all variations in biogeochemistry
controlling �pCO2 cannot be captured just using SST anoma-
lies.

4. Conclusions

The interannual variability in net sea–air CO2 fluxes is estimated
from subannual pCO2SW–SST relationships approximated by
segmented linear fits to new monthly climatological maps of
pCO2SW. The optimum subannual regressions are robust over
most of the ocean with a global average correlation coefficient
(R2) for all grid cells of 0.83. In the comparison with obser-
vations, our approach does not fully capture the magnitude of
interannual variability in CO2 fluxes due to local scale drivers
unrelated to SST changes, and thus, may underestimate the vari-
ability. A comprehensive evaluation is performed by applying
it to output of global biogeochemical ocean general circulation
model. The comparison shows that our approach using suban-
nual pCO2SW–SST relationships and interannual SST anomalies
to predict interannual changes in pCO2SW reasonably captures
the interannual variability of CO2 fluxes in the GCM in most
ocean regions except the Southern Ocean and for select time
periods. Our diagnostic approach captures the phase and magni-
tude of variability for most regions and time periods albeit with
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an about 23% lower amplitude when the derived pCO2SW–SST
relationships fairly represent actual mean state. The CCMP wind
product has 20% greater variability than the smoothed NCEP-II
wind product, which shows that the wind speed product can be
equally important as accurate estimate of �pCO2 in the study
of CO2 flux variability.

The estimated oceanic CO2 variability is closely related to
prominent climate modes such as the NAO and the ENSO. The
good predictability of the variation in fluxes due to ENSO is in
large part due to sustained observations of pCO2SW (and SST) in
the region and the adaptive relationships between pCO2SW and
SST that change with phase of ENSO and over time (Feely et al.,
2006). Our empirical approach can be improved with increas-
ing high quality pCO2SW observations to create regional regres-
sions of pCO2SW and SST, much like is done for the Equatorial
Pacific rather than relying on the climatology that invariably has
smoothed SST and pCO2SW seasonal variations. Moreover, sus-
tained long-term observations covering large areas will allow us
to better assess the validity of our diagnostic at regional scales.
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McKinley, G. A., Rödenbeck, C., Gloor, M., Houweling, S. and
Heimann, M. 2004. Pacific dominance to global air-sea CO2 flux
variability: A novel atmospheric inversion agrees with ocean models.
Geophys. Res. Lett. 31, L22308, doi:10.1029/2004GL021069.

McKinley, G. A., Takahashi, T., Buitenhuis, E., Chai, F., Christian, J. R.
and co-authors. 2006. North Pacific carbon cycle response to climate
variability on seasonal to decadal timescales. J. Geophys. Res. 111,
C07S06, doi:10.1029/2005JC003173.

Metzl, N. 2009. Decadal increase of oceanic carbon dioxide in South-
ern Indian Ocean surface waters (1991–2007). Deep Sea Res. II 56,
607–619.

Naegler, T., Ciais, P., Rodgers, K. and Levin, I. 2006. Excess radiocarbon
constraints on air-sea gas exchange and the uptake of CO2 by the
oceans. Geophys. Res. Lett. 33, L11802, doi:10.1029/2005GL025408.

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.
and co-authors. 2000. In situ evaluation of air-sea gas exchange pa-
rameterizations using novel conservative and volatile tracers. Global

Biogeochem. Cycles 14, 373–387.
Obata, A. and Kitamura, Y. 2003. Interannual variability of the sea-

air exchange of CO2 from 1961 to 1998 simulated with a global
ocean circulation-biogeochemistry model. J. Geophys. Res. 108,
3337, doi:10.1029/2001JC001088.

Park, G.-H., Lee, K., Wanninkhof, R. and Feely, R. A. 2006. Empiri-
cal temperature-based estimates of variability in the oceanic uptake
of CO2 over the past 2 decades. J. Geophys. Res. 111, C07S07,
doi:10.1029/2005JC003090.

Park, G.-H., Wanninkhof, R. and Triñanes, J. 2010. Procedures to Create
Near Real-Time Seasonal Air-Sea CO2 Flux Maps. NOAA Technical
Memorandum, OAR AOML-98, 14.

Patra, P. K., Maksyutov, S., Ishizawa, M., Nakazawa, T., Takahashi, T.
and co-authors. 2005. Interannual and decadal changes in the sea-
air CO2 flux from atmospheric CO2 inverse modeling. Global Bio-

geochem. Cycles 19, GB4013, doi:10.1029/2004GB002257.
Patra, P. K., Gurney, K. R., Denning, A. S., Maksyutov, S., Nakazawa,

T. and co-authors. 2006. Sensitivity of inverse estimation of an-
nual mean CO2 sources and sinks to ocean-only sites versus
all-sites observational networks. Geophys. Res. Lett. 33, L05814,
doi:10.1029/2005GL025403.
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