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Abstract

Eddy covariance records hold great promise for understanding the processes controlling

the net ecosystem exchange of CO2 (NEE). However, NEE is the small difference between

two large fluxes: photosynthesis and ecosystem respiration. Consequently, separating

NEE into its component fluxes, and determining the process-level controls over these

fluxes, is a difficult problem. In this study, we used a model-data synthesis approach with

the Simplified PnET (SIPNET) flux model to extract process-level information from 5

years of eddy covariance data at an evergreen forest in the Colorado Rocky Mountains.

SIPNET runs at a twice-daily time step, and has two vegetation carbon pools, a single

aggregated soil carbon pool, and a soil moisture submodel that models both evaporation

and transpiration. By optimizing the model parameters before evaluating model-data

mismatches, we were able to probe the model structure independent of any arbitrary

parameter set. In doing so, we were able to learn about the primary controls over NEE in

this ecosystem, and in particular the respiration component of NEE. We also used this

parameter optimization, coupled with a formal model selection criterion, to investigate

the effects of making hypothesis-driven changes to the model structure. These experi-

ments lent support to the hypotheses that (1) photosynthesis, and possibly foliar

respiration, are down-regulated when the soil is frozen and (2) the metabolic processes

of soil microbes vary in the summer and winter, possibly because of the existence of

distinct microbial communities at these two times. Finally, we found that including water

vapor fluxes, in addition to carbon fluxes, in the parameter optimization did not yield

significantly more information about the partitioning of NEE into gross photosynthesis

and ecosystem respiration.
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Introduction

Understanding the environmental and substrate-level

controls over respiration is central to predicting how

terrestrial ecosystem carbon storage may change in the

future. Unfortunately, it is rare that respiratory pro-

cesses are measured explicitly at the ecosystem level

(see Högberg et al., 2001; Subke et al., 2004 for examples

of recent successes). Laboratory studies of soils and

plants can provide insights into specific respiratory

controls, but efforts to scale this insight up to ecosys-

tems contain large uncertainties. Insight concerning

respiratory processes is contained in the large set of

eddy covariance data that are emerging from the nu-

merous flux sites that constitute the Fluxnet global

network (Baldocchi et al., 2001). One current challenge

is to develop strategies to extract this insight using

various modeling approaches that aim to partition the

net CO2 fluxes obtained from eddy covariance data, and

even further, partition the component fluxes into under-
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lying processes (e.g. Baldocchi & Wilson, 2001). For a

number of reasons, this challenge is formidable. Eco-

system respiration is the sum of several components,

classified into autotrophic and heterotrophic respira-

tion. Within these two categories, different processes

operate, including growth and maintenance respiration,

and multiple substrate types can be used (Hanson et al.,

2000). The first-order dependence of respiration on

changing substrate availability can be difficult to sepa-

rate from environmental regulation (Ryan & Law, 2005).

This separation is further confounded when specific

substrates are challenging to measure, especially true

of organic matter fractions used by soil organisms for

heterotrophic respiration.

Model-data synthesis techniques provide a new ap-

proach for gaining insights into the photosynthetic and

respiratory components of net ecosystem CO2 exchange

and their regulation by climate and substrate availabil-

ity (Schulz et al., 2001; Wang et al., 2001; van Wijk &

Bouten, 2002; Braswell et al., 2005). As defined by

Raupach et al. (2005), ‘model-data synthesis’ encom-

passes both parameter estimation and data assimilation.

These techniques combine process-based models, ob-

servations of fluxes, and prior estimates of state and rate

constants to assess which combinations of model struc-

ture and parameter values are most consistent with

time-series observations. Rather than iteratively fitting

each parameter to the subset of the data that best

constrains that parameter – for example, first fitting

respiration-related parameters to night-time CO2 fluxes,

then fitting photosynthesis-related parameters to the

residual daytime fluxes – these techniques can consider

all the data and all the parameters simultaneously. This

allows greater consistency with the observations.

A number of recent studies have concluded that eddy

covariance data contain information on the values of

only three or four model parameters (Schulz et al., 2001;

Wang et al., 2001). However, it is likely that this conclu-

sion was only reached because of the short data record

(2 or 3 weeks) used in these studies, a problem that

Schulz et al. (2001) themselves acknowledged. Braswell

et al. (2005) found that by using multiple years of eddy

covariance data, a carbon flux model could be well

constrained on most time scales of interest. Although

there were 23 free parameters in this study, the majority

of these parameters were well constrained by the CO2

flux data.

In this study, we apply an ecosystem model and a

Markov chain Monte Carlo (MCMC) parameter estima-

tion approach to analyze a 5-year eddy covariance time

series from the Niwot Ridge Ameriflux site (see Monson

et al., 2002; Turnipseed et al., 2002 for a description of the

site and its turbulent fluxes). We illustrate several ways

in which model-data synthesis can be used to better

understand the controls over the net ecosystem ex-

change of CO2 (NEE), and in particular the respiration

component of NEE. In our analyses, we focused pri-

marily on areas of significant model-data mismatch,

and on what we could learn about respiration in this

ecosystem from these model failures. Although many

modeling studies focus on agreements between the

model and observations, model failures tend to be more

informative than model successes. By performing a

parameter optimization before assessing areas of model

failure, we were able to probe the model structure

independent of any given – and necessarily somewhat

arbitrary – choice of parameters.

Most fundamentally, we ask the question, ‘What is

the best way of estimating the separate contributions of

ecosystem respiration and photosynthesis to NEE?’ As

NEE is a fairly small difference between the large

ecosystem respiration and photosynthesis fluxes, esti-

mating the growing season daytime contribution of

respiration to NEE is an important prerequisite for

further analysis. Second, we use the technique to ask

questions about seasonal mechanistic control over re-

spiration by a combination of model selection (compar-

ing the fit after small changes in model structure) and

parameter value estimation. Through these analyses,

we illustrate the types of information about respiration

that are accessible through eddy covariance (CO2 and

H2O) data, and also illustrate the synergisms between

approaches involving empirical data collection and

‘top-down’ modeling. Specifically, we use a formal

model selection criterion to attempt to answer the

following questions: (1) are photosynthesis and foliar

respiration down-regulated when soils are frozen? (2)

Do the parameters governing soil respiration vary be-

tween summer and winter, supporting findings that

suggest the existence of seasonally varying microbial

communities at this site (Lipson et al., 2002)? (3) Is there

more support for a soil respiration function that exhibits

increasing temperature sensitivity with decreasing soil

temperature (Lloyd & Taylor, 1994) than for a standard

Q10 function? (4) Does the addition of a fast-turnover

litter pool allow for more realistic model dynamics? (5)

How much of an effect does soil moisture have on soil

respiration at this site? Finally, we investigated the

benefits of including H2O fluxes as well as CO2 fluxes

in the optimization.

We used a relatively simple model in this study,

partly to decrease the number of free parameters in

the optimization and partly to allow for an easier

diagnosis of the causes of model-data mismatch. We

do not expect a simple model to capture all the ob-

served scales of variability as it cannot include all the

processes that affect CO2 flux. If, on the other hand, we

began with a sufficiently complex model of reasonably
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appropriate structure, we could obtain a nearly perfect

fit but it would be highly susceptible to over fitting

(Gershenfeld, 1999). We, therefore, begin with a basic

structure and only add complexity in response to spe-

cific hypotheses. After changing the model, we use a

formal model selection statistic to evaluate the change

in fit, to take into account changes in the dimensionality

of the model. As will be discussed below, the model

changes that we evaluate emerge from independent

data and analyses at the site. That is, by beginning

simple, we can identify systematic errors and use them

as a guide to model development, rather than beginning

with a complex model that, when used in an estimation

framework, can likely be fit to the data so well that it

will not generate informative errors.

Materials and methods

Data overview

The data used in this study were from the Niwot Ridge

Ameriflux site, a high-elevation (3050 m), subalpine

forest, located approximately 50 miles west of Boulder,

Colorado (401105800N; 10513204700W), just below the Con-

tinental Divide. The dominant species in this forest are

subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea

engelmannii), and lodgepole pine (Pinus contorta). The

forest is about 100 years old and is still in a state of

aggradation, recovering from logging. The understory

is relatively sparse, with 25% average coverage of tree

seedlings, Vaccinium sp., lichens, and moss. Soils are

sandy, with a thin (o6 cm) organic horizon. The annual

precipitation averages 800 mm, and the mean annual

temperature is 4 1C (Monson et al., 2002). The annual net

primary productivity (NPP) of this site (250–

500 g C m�2) is lower than that of most forest ecosys-

tems, owing to the harsh, high-elevation climate. This

harsh climate restricts soil mineralization, plant growth,

and the recruitment of new trees (Monson et al., 2002).

From November 1998 through the present, half-

hourly fluxes of CO2 and H2O, along with correspond-

ing climate data, have been measured at this site. For

this study, we used data from November 1, 1998

through December 31, 2003. Fluxes were calculated

using the eddy covariance method (Baldocchi et al.,

1988; Baldocchi, 2003). Specific methods used at this

site are described in a number of previous papers

(Monson et al., 2002; Turnipseed et al., 2002, 2003,

2004). Briefly, CO2 (or H2O) flux estimates are calculated

from the covariance of high-frequency fluctuations in

vertical wind velocity and CO2 (or H2O) concentration.

The NEE is defined as the sum of this flux term and a

canopy CO2 storage term, which is calculated from the

change in CO2 concentration as a function of height

(Monson et al., 2002). Gaps in the flux data could occur

either because of instrument malfunction or because

of periods of high atmospheric stability (u�< 0:2, which

can lead to an underestimate of the flux; Goulden et al.,

1996; Monson et al., 2002). Depending on the length of

the gaps, they were filled using either a spline fit,

empirical regressions based on photosynthetically ac-

tive radiation (PAR), air and soil temperature, or a 10-

day average (Monson et al., 2002). The total percentage

of 30 min periods that required gap filling over the 5-

year data set was 28% for the CO2 flux data and 26% for

the H2O flux data.

We used six climate variables to drive the model’s

flux dynamics: (1) average air temperature, (2) average

soil temperature, (3) precipitation, (4) flux density of

PAR, (5) relative humidity, and (6) wind speed. Gaps in

these climate drivers were filled using multivariate

nonlinear regression (MacKay, 1992; Bishop, 1995)

based on the available meteorological data, the day of

year, and the time of day. The relative humidity and air

temperature were then used to compute the atmo-

spheric vapor pressure and the atmospheric vapor

pressure deficit (VPD).

As the ecosystem model was run on a twice-daily

time step, both the flux data and the climate drivers

were aggregated up to two daily periods, where the

exact length of each daytime or night-time step was

based on the date. To avoid giving too much weight to

gap-filled data points in the parameter optimization,

only twice-daily time steps that were composed of at

least 50% observed (i.e. not gap-filled) half-hourly

fluxes were included in the optimization. This meant

that 23% of the twice-daily CO2 flux data points and

21% of the twice-daily H2O flux data points were

considered invalid. We did not require all half-hourly

fluxes making up a time step to be observed, because

doing so would allow only 30% of the twice-daily CO2

flux data points to be included in the optimization, a

significant loss of data. The optimization is somewhat

sensitive to this threshold of the gap-filled fraction,

although it remains unclear what is the best threshold

to use (Braswell et al., 2005). We chose a 50% threshold

as a compromise between a very strict and a very

lenient threshold.

The Simplified PnET (SIPNET) ecosystem model

The ecosystem model that we used to model carbon and

water fluxes was based largely on the PnET model

developed by Aber and co-workers (Aber & Federer,

1992; Aber et al., 1995, 1996, 1997). We simplified a

number of aspects of this model, for example replacing

the carbon allocation scheme (Aber et al., 1996) with a

simpler phenology model. To acknowledge the contri-
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butions of PnET, we refer to our model as SIPNET.

SIPNET describes carbon flux dynamics between the

atmosphere and three terrestrial carbon pools: two

vegetation pools – wood and leaves – and an aggre-

gated soil carbon pool (Fig. 1). We do not explicitly

separate aboveground and belowground autotrophic

respiration, but include root respiration in the single

autotrophic respiration term. Thus, we will use ‘soil

respiration’ and ‘heterotrophic respiration’ interchange-

ably in this paper. Water flux dynamics are also mod-

eled (Fig. 1), giving an estimate of evapotranspiration;

soil wetness affects both photosynthesis and soil re-

spiration. The model runs at a twice-daily time step,

with one time step for each day or night. The initial

conditions and fluxes governing the evolution of the

model are controlled by 35 parameters, 32 of which

were allowed to vary in the optimization (Table 1), and

three of which were fixed (Table 2).

An earlier version of SIPNET, which was applied to a

deciduous forest in the northeastern US (the Harvard

Forest), is described by Braswell et al. (2005). We made

two major changes to the model in applying it to the

Niwot Ridge evergreen forest. First, we included a more

complex water routine, incorporating evaporation and

the modeling of a snow pack. This change was neces-

sary because soil moisture is thought to be a significant

determinant of NEE at Niwot Ridge (Monson et al.,

2002); at Harvard Forest, in contrast, vegetation is

thought to experience relatively less water stress (Aber

et al., 1995). Snowmelt dynamics also have a significant

effect on NEE at Niwot Ridge (Monson et al., 2002).

Second, we used an evergreen leaf phenology rather

than the deciduous phenology that was used in model-

ing the Harvard Forest. A summary of the major

components of the model and a more complete descrip-

tion of the changes that have been made in this version

are given in the appendix.

A driving philosophy in the design of this model was

to include relatively few processes. In particular, we

excluded processes for which the governing equations

themselves are highly uncertain. Including such pro-

cesses – and the accompanying additional parameters –

could lead to an over fitting of the data that is not

grounded in mechanistic understanding. Thus, for ex-

ample, we did not explicitly model fine root dynamics

because these dynamics are not well understood. Using

a relatively simple model also made it easier to gain

insights from model-data errors, and reduced the num-

ber of free parameters, thus decreasing the computa-

tional intensity of the optimization.

Parameter optimization

The parameter optimization method that we used is a

variation of the Metropolis algorithm (Metropolis et al.,

1953). The particular form of the algorithm that we used

was described by Braswell et al. (2005); this algorithm

was based on an algorithm developed by Hurtt &

Armstrong (1996). The optimization algorithm gener-

ates not only a single best parameter set but also a range

of parameter sets that represent approximately equally

good matches to the data. This allows the generation of

confidence intervals on the optimal parameter values,

and the determination of correlations between para-

meters. In addition, by running the model forward on

the retrieved ensemble of parameter sets, confidence

intervals can be generated on the optimized model

output.

In performing the optimization, each parameter was

restricted to a specified allowable range (using a uni-

form prior distribution). Parameter ranges were deter-

mined through a combination of literature values,

knowledge of the system, and initial tests of the opti-

mization (Table 1). In general, we erred on the side of

Plant wood
 carbon

Photosynthesis Autotrophic
respiration

Leaf
creation

Vegetation

Soil carbon

Wood litter Leaf litter

Heterotrophic
respiration

Precipitation

T > 0?

No:
Snow

Snow pack

Sublimation

Yes:
Rain

Interception &
evaporation

Throughfall

Fast flow
(drainage)

Infiltration

Soil water:
surface layer

Soil water:
root zone

Snow melt

Surface layer
drainage

Root zone
drainage

Evaporation

Transpiration

Plant leaf
 carbon

Fig. 1 Simplified PnET pools and fluxes. The model has two

vegetation carbon pools and one soil carbon pool. The soil

moisture submodel, which has been significantly expanded in

this version of the model, includes two layers of soil water and a

snow pack. Soil moisture affects both photosynthesis and soil

respiration.
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making the parameter ranges too wide, to try to ensure

that the ranges included the actual value and to give the

optimization more freedom. Initial guesses for the para-

meters were also derived from a combination of litera-

ture values and knowledge of the system, but we did

not place much emphasis on choosing the ‘correct’

value of the parameters because it has been found that

this method of parameter optimization is relatively

insensitive to the parameters’ initial values (Braswell

et al., 2005).

The optimization proceeds as a quasi-random walk

through the parameter space, attempting to find para-

meter sets that minimize the model-data error. Here,

model-data error is defined in terms of likelihood (L),

and minimizing this error is equivalent to maximizing

the likelihood:

L ¼
Yn

i¼1

1ffiffiffiffiffiffi
2p
p

s
e�ðxi�miÞ2=2s2

; ð1Þ

where n is the number of data points, xi and mi are the

measured and modeled fluxes, respectively, and s is the

error (one standard deviation) on each data point. It is

important to note that here s represents data error

relative to the given model structure, and thus represents

a combination of measurement error and process repre-

sentation error. In practice, log likelihood (LL) is used

in place of likelihood as it is computationally easier

to work with. As mentioned above, we only used

Table 1 SIPNET parameters and initial conditions that were allowed to vary in the optimization, and their allowable ranges

Symbol Definition Range

Initial pool values

CW,0 Initial plant wood C content (g C m�2) 6600–14 000

CL,0 Initial plant leaf C content (g C m�2) 0–630

CS,0 Initial soil C content (g C m�2) 3300–19 000

WS,0 Initial soil moisture content, surface layer (fraction of WS,c) 0–1

WR,0 Initial soil moisture content, root zone (fraction of WR,c) 0–1

Photosynthesis/respiration parameters

Amax Maximum net CO2 assimilation rate (nmol CO2 g�1 (leaf biomass) s�1) 0–34

KF Foliar maintenance respiration as fraction of Amax (no units) 0.05–0.30

Tmin Minimum temperature for photosynthesis ( 1C) �8–8

Topt Optimum temperature for photosynthesis ( 1C) 5–30

Q10V Vegetation respiration Q10 (no units) 1.4–2.6

Ts Soil temperature at which photosynthesis and foliar respiration are shut down ( 1C) �5–5

KVPD Slope of VPD–photosynthesis relationship (kPa�1) 0.01–25

PAR1/2 Half saturation point of PAR–photosynthesis relationship (mol m�2 day�1) 7–27

k Canopy PAR extinction coefficient (no units) 0.38–0.62

NPPL Fraction of NPP allocated to leaf growth (no units) 0–0.44

KL Turnover rate of leaf C (g C g�1 C yr�1) 0–0.2

KA Wood respiration rate at 0 1C (g C g�1 C yr�1) 0.0006–0.06

KH Soil respiration rate at 0 1C and moisture-saturated soil (g C g�1 C yr�1) 0.006–0.15

Q10S Soil respiration Q10 (no units) 1.4–3.5

Moisture parameters

f Fraction of soil water removable in one day (no units) 0.001–0.16

KWUE VPD–water use efficiency relationship (mg CO2 kPa g�1 H2O) 0.01–30

WS,c Soil water-holding capacity, surface layer (cm (precipitation equivalent)) 0.01–4

WR,c Soil water-holding capacity, root zone (cm (precipitation equivalent)) 0.1–36

E Fraction of rain immediately intercepted and evaporated (no units) 0–0.2

F Fraction of water entering soil that goes directly to drainage (no units) 0–0.2

KS Snow melt rate (cm (water equivalent) 1C�1 day�1) 0.05–0.25

KD Rate of water drainage from upper to lower soil water layer for fully saturated

upper layer (cm (water equivalent) day�1)

0.01–1.0

Rd Scalar relating aerodynamic resistance to wind speed (no units) 60–1500

Rsoil,1 Scalar relating soil resistance to fractional soil wetness (see text) (no units) 0–16.4

Rsoil,2 Scalar relating soil resistance to fractional soil wetness (see text) (no units) 0–8.6

Tree physiological parameters

SLWC C content of leaves on a per area basis (g C m�2 (leaf area)) 86–500

KW Turnover rate of plant wood C (g C g�1 C yr�1) 0.003–0.3

The ranges assume a uniform prior distribution.
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twice-daily data points for which at least 50% of the

half-hourly values making up the data point were

measured (i.e. not gap-filled).

Note that this likelihood equation assumes a Gaus-

sian model-data error, and a uniform s for all data

points. We acknowledge that these assumptions may

be violated for eddy covariance data. For example,

night-time fluxes may have larger errors, especially in

complex terrain like that at our study site, due in part to

cold air drainage, although the application of a u� filter

(see Data Overview) should correct for this problem

(Goulden et al., 1996; Monson et al., 2002). In addition,

even during ideal conditions, it is likely that there may

have been some systematic errors (Goulden et al., 1996).

Finally, it should be noted that in computing the like-

lihood, we used cumulative fluxes over each twice-daily

time step rather than rates. This distinction is mean-

ingful because the time steps could vary in length by a

few hours. Whether this choice made the assumption of

constant s more or less valid is unclear, and depends on

the error structure of the data. However, a detailed error

analysis was beyond the scope of this study.

Because s is unknown, we estimated s at each step of

the optimization. For a given model output (i.e. a given

set of mi values), we determine the most likely value of

s, or the value that maximizes L (Hurtt & Armstrong,

1996), which is

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi � mið Þ2
s

: ð2Þ

Braswell et al. (2005) found that the values of se

retrieved from optimizations on synthetic data sets,

generated by running the model forward using known

parameter values and then adding Gaussian error,

matched the values used to generate the data sets

almost exactly. This finding lends validity to our meth-

od of estimating s.

For most experiments, we used only the CO2 fluxes in

the optimization. That is, the xi terms were measured

NEE fluxes, and the mi terms were modeled NEE fluxes.

Modeled NEE is given by

NEE ¼ RA þ RH �GPP; ð3Þ

where RA is the autotrophic respiration, RH is the soil

(i.e. heterotrophic) respiration, and GPP is the gross

primary productivity. In one experiment, however, we

used both CO2 fluxes and H2O fluxes in the optimiza-

tion. The observed H2O fluxes were compared with

modeled evapotranspiration (ET):

ET ¼ EI þ EP þ ES þ T; ð4Þ

where EI is immediate evaporation, EP is sublimation

from the snow pack, ES is soil evaporation, and T is

transpiration (see appendix for a description of these

fluxes). In performing the optimization in this experi-

ment, the total likelihood (Ltot) was given by

Ltot ¼ LCO2
LH2O; ð5Þ

where LCO2 is the likelihood derived from considering

only the model-data error in net CO2 flux, and LH2O is

the likelihood derived from considering only the mod-

el-data error in H2O flux. This formulation implies that

the two partial likelihood terms are independent. In

particular, note that each of these partial likelihood

terms uses a different value for se, the estimated data

standard deviation (relative to the model) for a given

data type, allowing for a dynamic weighting of the two

data types.

Each step of the optimization consists of choosing a

parameter (Pi) at random and changing its value by a

random amount, keeping all other parameters fixed at

their previous values. The model is run using the newly

generated parameter set, and its likelihood, L(new), is

compared with the likelihood of the previous point,

L(old). If L(new) � L(old), the new parameter set is

accepted. If L(new)oL(old), the new parameter set

may still be accepted; the probability of acceptance is

the ratio of the likelihoods. If the new parameter set is

rejected, the new point is ignored and Pi reverts to its

old value. The acceptance of parameter sets that yield

slightly worse likelihoods helps prevent the optimiza-

tion from getting stuck in local, but nonglobal, optima.

After a spin-up period (described in Braswell et al.,

2005), the set of accepted points is an estimator of the

posterior distribution of the parameters. In this study,

Table 2 SIPNET parameters that were held constant in the optimization

Symbol Definition Value Source

WP,0 Initial snow pack (cm, water equivalent) 0 N/A

FAmax Average daily max photosynthesis as fraction of Amax (no units) 0.76 Aber et al. (1996)

FC Fractional C content of leaves (g C g�1 (leaf biomass)) 0.45 Aber et al. (1995)

The two parameters FAmax and FC could not be estimated independent of other model parameters.

N/A, not applicable.

6 W. J . S A C K S et al .

r 2005 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2005.01059.x



we ran the optimization long enough to generate about

150 000 such accepted points.

Experiments involving model modification

Our overall experimental strategy was to make mod-

ifications to the structure of the model and test whether

these modifications improved the model-data fit in the

face of an optimized parameter set. We made five

modifications to the model described in the appendix.

By examining the effect of these modifications on the

model-data fit, we expected to learn more about the

controls on NEE in this ecosystem. We were especially

interested in the dynamics of soil respiration, so four of

the five modifications related to the soil respiration

component of SIPNET. A parameter optimization such

as the one used in this study allows for a more robust

model selection. With a single, somewhat arbitrary set

of parameters, mismatches between model predictions

and validating data must be interpreted as being be-

cause of a combination of (1) data error, (2) error in

model structure (i.e. representation of processes within

the model), and (3) cumulative errors because of para-

meter values being displaced from optimality. Para-

meter optimization allows us to evaluate the ability of

the model to represent the data after minimizing the

third source of error; thus, we can better isolate the

influence of model structure (Braswell et al., 2005).

In the first modification, we forced the net photosyn-

thetic rate to zero when the soil temperature fell below a

threshold temperature, TS. Although the forest at Niwot

Ridge is mostly evergreen, photosynthesis rates are

close to zero during the winter, even when air tempera-

tures are relatively high (Monson et al., 2002). Similar

findings have been reported in other cold-climate ever-

green forests (Hollinger et al., 1999). A suggested me-

chanism is the lack of available water for transpiration

when the soil is frozen (Hollinger et al., 1999; Monson

et al., 2002). In addition, because there is little or no fresh

photosynthate supplied to leaves in the winter, it is

likely that foliar respiration is reduced to near-zero as

well. In support of this hypothesis, Hollinger et al.

(1999) found that in a spruce-dominated forest, below-

canopy CO2 flux accounted for nearly all the nocturnal

respiration in the winter. We tested this hypothesis by

turning the photosynthetic and foliar respiration fluxes

off entirely during the winter. The timing of this shut-

down was based on a soil temperature threshold, TS,

which we allowed to vary in the optimization because

of uncertainties regarding the mechanisms responsible

for this shutdown.

Because this first modification led to significant im-

provements in the model-data fit (see Results), we used

this version as the base on which the remaining four

modifications were made. Thus, we will use ‘base

model’ to refer to the model with this single modifica-

tion. The remaining four modifications were made

independent of each other – that is, each model version

had only one modification in place.

In the second modification (‘seasonal RH model’),

we replaced the single set of parameters governing

soil respiration (KH and Q10S) with two such sets of

parameters: one set governing soil respiration during

the summer when the soil is warm (KH,w and Q10S,w)

and the other during the winter when the soil is cold

(KH,c and Q10S,c). The allowed ranges of these para-

meters were the same as for the similar parameters in

the base model, except for Q10S,c, which had a higher

upper limit (6.0). The temperature below which the

cold-soil parameters were used was determined by a

third new parameter (Tc; range: �2 to 4 1C). Lipson et al.

(2002) found evidence for the existence of seasonally

varying microbial communities in an ecosystem near

our study site, and preliminary measurements at our

study site have revealed evidence for two distinct

seasonal microbial communities as well (Lipson, Scott-

Denton & Monson, unpublished data). The allowance

for seasonally varying respiration parameters in the

model was meant partly as a test of these findings

and partly as an investigation of how much of the

model-data error could be corrected by allowing such

seasonal variations.

In the third modification (‘Lloyd-and-Taylor model’),

we replaced the Q10 function relating soil respiration to

soil temperature with an alternative formulation that

has been found to produce a better fit to soil respiration

data (Lloyd & Taylor, 1994, their Eqn (11)):

fðTsoilÞ ¼ e
E0

1
�T0
� 1

Tsoil�T0

� �
; ð6Þ

where Tsoil is the soil temperature, and E0 and T0 are

empirical parameters. As E0 and T0 are highly corre-

lated, we fixed E0 at 309 (Lloyd & Taylor, 1994), and

allowed T0 to vary across a wide range of values (�273

to �25 1C; Lloyd & Taylor (1994) give �46 1C), as was

done in Falge et al. (2001). Note that this model implies

increasing temperature sensitivity with decreasing tem-

peratures. This modification tested whether a more

parsimonious model could achieve the same results as

the seasonal RH model.

In the fourth modification (‘litter model’), we re-

placed the single aggregated soil carbon pool with

two pools: an upper litter pool and a lower soil pool.

Wood and leaf litter were added to the upper litter pool.

Litter breakdown was computed using the same func-

tional form as soil respiration (see appendix), but with a

different base rate (KB; range: 0.1–1.6 g C g�1 C yr�1),

and using the surface layer moisture content rather
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than that of the root zone; the temperature effect re-

mained the same. An additional parameter governed

the fraction of broken-down litter that was respired (FR;

range: 0.25–0.75), with the remainder being transferred

to the lower soil carbon pool. A third additional para-

meter specified the initial carbon content of the litter

pool (range: 130–1200 g C m�2). This modification was

meant to test how much better the model could match

the data with the additional substrate dynamics al-

lowed by this litter pool.

In the fifth modification (‘moisture-independent RH

model’), soil respiration was made independent of soil

moisture. This modification was meant to test the im-

portance of the moisture effect on soil respiration in this

ecosystem.

Results

Optimization on base model

The monthly mean residuals generated using the best

parameter set from the optimization, and using the

model without the shutdown of either photosynthesis

or foliar respiration in the winter, are shown in Fig. 2a.

An examination of these residuals recommends the

inclusion of these shutdown effects in the model. Dur-

ing the winter months, this model predicts too much

respiration at night, and too much photosynthesis dur-

ing the day (although this latter difference could also be

due to predicting too little respiration during the day).

During the growing season, the model predicts too little

respiration at night and too little photosynthesis (or too

much respiration) during the day. When photosynthesis

and foliar respiration are shut down in the winter (in

the ‘base model’), the optimized model-data fit is sig-

nificantly better than the optimized fit on the model

without these shutdowns (Table 3). Although the

monthly mean model-data residuals show similar pat-

terns for both models, they are generally of a lesser

magnitude for the model that includes the winter

down-regulation (Fig. 2b). An optimization on a model

that included the wintertime shutdown of photosynth-

esis but not foliar respiration showed most, but not all,

of the improvement seen in the model with a shutdown

of both (data not shown). It is also interesting to note

that the optimized value of TS tended to be within half a

degree of 0 1C. These results lend support to the hy-

pothesis that frozen soils cause a shutdown of at least

photosynthesis, and possibly also foliar respiration

(Hollinger et al., 1999; Monson et al., 2002).

The best parameter set retrieved from the optimiza-

tion on the base model is shown in Table 4. The poster-

ior distribution of each parameter is also given,

indicating how well the observations constrain each

parameter. The modeled NEE time series generated

with the base model, using the best parameter set

retrieved from the optimization, along with the ob-

served time series, are shown in Fig. 3. The optimized

model matches the general patterns in the data well, but

overlooks some significant features. First, the model

does not capture the peak summertime uptake evident

in the data. The largest errors occur during the months

of May and June (Fig. 2b), when the forest exhibits high

photosynthetic rates because of a relative lack of water

limitation. This error may represent a compromise that

the optimization makes to match both the high uptake

rates early in the growing season and the relatively

lower uptake rates in mid-summer, when there is more

water limitation.
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Fig. 2 Monthly mean residuals (data minus model) generated

using the best parameter set retrieved from the optimization,

using (a) a model without wintertime down-regulation of photo-

synthesis or foliar respiration, and (b) a model with these down-

regulations (‘base model’). Error bars show one standard devia-

tion of the five (for January–October, 1999–2003) or six (for

November and December, 1998–2003) annual means for each

month. Positive net ecosystem exchange of CO2 denotes net loss

of CO2 from the ecosystem to the atmosphere. Note that the

residuals are generally in the same direction for both models, but

tend to be smaller for the model with wintertime down-regula-

tion of photosynthesis and foliar respiration.
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Second, the model is not able to capture the most

significant periods of mid-summer NEE reduction. This

is most noticeable in 2002, when the data show a period

of net carbon loss to the atmosphere in the middle of the

growing season (Fig. 3b). This period of net loss is

presumably because of a combination of high tempera-

tures allowing higher respiratory rates (as is evident

from the high night-time NEE, Fig. 3a), and low soil

moisture levels causing a decrease in photosynthesis.

The winter of 2002 was the driest on record for this

region over more than 100 years of climate records. The

extremely low amount of wintertime precipitation, and

lower-than-normal summertime precipitation, left the

midsummer soils in an extremely dry state. The opti-

mized model, however, predicts no water stress at this

time (Fig. 4).

Third, the model is not able to match the observed

variability in night-time respiration (Fig. 5). This error is

particularly apparent in the model’s inability to match

the highest levels of respiration observed in the data

(Figs 2b and 3d).

The model reproduces the basic features of the sea-

sonal and diurnal cycle of NEE (Fig. 6). In general, the

differences between the modeled and observed diurnal

cycles lie within the range of annual variability. This is

consistent with SIPNET results at the Harvard Forest,

where the model also accurately simulated the seasonal

and diurnal cycle amplitudes (Braswell et al., 2005). The

model is consistently biased, however, slightly under-

estimating diurnal amplitude in the summer but

slightly overestimating diurnal amplitude in the spring

and fall. Some of the error in simulating the diurnal

cycle likely emerges from the model’s failure to capture

peak daytime uptake rates and the full range of ob-

served night-time respiration rates.

One of the advantages of the optimization method

used in this study is that it generates an ensemble of

parameter sets that represent approximately equally

good matches between model and data. By running

the model forward using each parameter set in this

ensemble, it is straightforward to generate uncertainty

estimates on the model’s predictions (Fig. 7). In this

case, the model uncertainty is small relative to the

model-data error. Thus, as in the above analysis, we

can take the model predictions generated using the

single best parameter set to be fairly representative of

the patterns seen using any parameter set in the en-

semble. Consequently, in further analyses we will con-

sider only the best parameter set retrieved from the

optimization, unless otherwise noted.

Optimization on multiple data types

In performing a simultaneous optimization on 32 para-

meters, it is likely that there will be tradeoffs between

some parameter pairs. That is, by varying two para-

meters together, the optimization could achieve an

equally good model-data fit, or possibly even an almost

identical model output. In such cases, neither parameter

value can be estimated accurately. As the optimization

provides an ensemble of parameter sets that represent

good fits of the model to the observations, it can be used

to investigate such parameter correlations. We do, in

fact, find high linear correlations between a number of

parameter pairs (Fig. 8). For example, Amax (the max-

imum net CO2 assimilation rate) and PAR1/2 (the half

saturation point of the PAR–photosynthesis relation-

ship) were positively correlated (r 5 0.58), suggesting

that these two parameters could be increased (or de-

creased) simultaneously and the model’s NEE predic-

tions would not vary significantly. There were also a

number of high correlations between rate constants and

initial conditions. For example, KH and CS,0 were nega-

tively correlated (r 5�0.89). This points out the diffi-

Table 3 Model-data comparison statistics from running six versions of SIPNET using the best parameter set retrieved from the

optimization on each model

Base

model

No winter

time shutdown

of psn., foliar resp.

Seasonal

RH

Lloyd-and-

Taylor model

Add’l litter

pool

Moisture-

independent RH

Best log likelihood* �2404.2 �2614.7 �2374.0 �2403.2 �2407.6 �2415.7

RMS errorw 0.555 0.597 0.550 0.555 0.556 0.558

# free parameters 32 31 35 32 35 32

BICz 5063.4 5476.5 5027.0 5061.5 5094.1 5086.4

See text for a description of model variations.

*Larger (i.e. closer to zero) numbers mean greater likelihood.
wRoot mean square error in g C m�2 over a single time step.
zBIC (Bayesian Information Criterion) 5�2 LL 1 K ln (n), where LL is the log likelihood, K is the number of free parameters, and n is

the number of data points used in optimization (2894). A lower BIC indicates a model with greater support from the data.
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culty in separating direct climatic controls over NEE

from indirect controls such as the influence of substrate

availability on respiration rate (Giardina & Ryan, 2000;

Ryan & Law, 2005).

Another type of correlation arises in this optimization

because of the particular data we used. NEE is the

relatively small difference between two large fluxes:

ecosystem respiration (R) and GPP. Thus, it is easy for

the model to achieve the right answer (i.e. a good match

to the observed NEE) for the wrong reasons (i.e. wrong

partitioning of NEE into component fluxes, for example

by overestimating both R and GPP). The effects of both

the parameter correlations and these correlations be-

tween component fluxes could – in principle – be

reduced by optimizing on multiple data types. Increas-

ing two parameters simultaneously may result in simi-

lar model predictions of the first data type without

resulting in similar predictions of the second data type.

Similarly, a second data type could allow a better

separation of GPP and R. We tested the effect of

including a second data type by optimizing on water

vapor fluxes in addition to net CO2 fluxes. During the

day, H2O fluxes are primarily influenced by transpira-

tion, and thus by the level of gross photosynthesis, so

these fluxes could provide a means for separating GPP

and R.

Not surprisingly, optimizing on both data types led to

a large decrease in the model-data error in H2O flux

(CO2 alone: root mean square (RMS) error 5 0.150 cm

precipitation equivalent over a single time step; both

data types: RMS error 5 0.062 cm precipitation equiva-

lent over a single time step), but a slight increase in the

model-data error in net CO2 flux (CO2 alone: RMS

error 5 0.555 g C m�2 over a single time step; both data

types: RMS error 5 0.569 g C m�2 over a single time

step). When optimizing on two data types, we can no

longer achieve the best possible match of either data

type individually. In addition, in the optimization on

both data types there was a general decrease in the

posterior variances of parameters that directly influence

the H2O flux. The variances of other parameters were

neither consistently larger nor consistently smaller than

in the optimization on CO2 alone.

The inclusion of H2O fluxes in the optimization did

not significantly change the number of highly correlated

parameters (Fig. 8). Most of the highly correlated para-

meters in the optimization on CO2 alone were still

highly correlated when H2O fluxes were included in

the optimization. Moreover, the inclusion of H2O fluxes

in the optimization did not lead to a significantly

different optimal separation of NEE into GPP and R,

although it did lead to a different separation of R into

autotrophic respiration (RA) and heterotrophic respira-

tion (RH) (Fig. 9). Wood respiration rates were signifi-

cantly higher, and heterotrophic respiration rates

significantly lower, in the optimization on both data

types. The mean annual NPP in the optimization on

CO2 fluxes alone was 273 g C m�2 (with a range of 229–

318 g C m�2 over the 5 years, 1999–2003), while the

mean NPP in the optimization on both fluxes was

145 g C m�2 (with a range of 123–193 g C m�2 over the

5 years). Most of this difference was because of the

different partitioning of R into RA and RH. Monson et al.

(2002) estimate the annual NPP in this forest to be

between 250 and 500 g C m�2. The NPP estimated from

the optimization on CO2 fluxes alone generally falls

within this range, while the NPP estimated from the

Table 4 Parameter values retrieved from the optimization on

the base model (see Table 1 for parameter definitions)

Parameter Best value Mean value

CW,0 (g C m�2) 7432 8071 � 1374

CL,0 (g C m�2) 564 521 � 91

CS,0 (g C m�2) 18 889 14 666 � 3809

WS,0 0.03 0.07 � 0.07

WR,0 0.02 0.02 � 0.01

Amax (nmol CO2 g�1 s�1) 7.66 9.15 � 1.85

KF 0.28 0.217 � 0.034

Tmin( 1C) �1.95 �1.93 � 0.17

Topt( 1C) 18.3 18.5 � 0.9

Q10V 2.44 2.29 � 0.12

Ts( 1C) �0.32 �0.34 � 0.01

KVPD (kPa�1) 0.094 0.099 � 0.006

PAR1/2 (mol m�2 day�1) 7.9 10.2 � 1.5

k 0.525 0.495 � 0.068

NPPL 0.021 0.016 � 0.014

KL (g C g�1 C yr�1) 0.037 0.037 � 0.011

KA (g C g�1 C yr�1) 0.023 0.028 � 0.005

KH (g C g�1 C yr�1) 0.009 0.010 � 0.003

Q10S 1.50 1.52 � 0.10

f 0.028 0.026 � 0.010

KWUE (mg CO2 kPa g�1 H2O) 29.1 24.8 � 3.6

WS,c (cm) 3.66 3.48 � 0.47

WR,c (cm) 22.1 23.0 � 4.2

E 0.090 0.095 � 0.057

F 0.066 0.100 � 0.056

KS (cm 1C�1 day�1) 0.068 0.079 � 0.020

KD (cm day�1) 0.01 0.07 � 0.12

Rd 101 138 � 51

Rsoil,1 8.6 11.7 � 3.0

Rsoil,2 0.004 2.20 � 2.05

SLWC (g C m�2) 231 368 � 95

KW (g C g�1 C yr�1) 0.29 0.21 � 0.05

The ‘Best value’ column reports the parameter set that yielded

the highest likelihood in the Markov chain Monte Carlo

parameter estimation. The ‘Mean value’ column reports the

estimated posterior mean and standard deviation of each

parameter, generated from 168 150 parameter sets that yielded

approximately equally good model-data fits.
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optimization on both fluxes does not. Thus, forcing the

model to match H2O fluxes actually caused the parti-

tioning of respiration, and as a result NPP, to become

less realistic.

Model modifications

The optimization on the seasonal RH model yielded a

better model-data fit than that on the base model (Table

3). With three additional parameters, however, this

optimization is expected to perform somewhat better

simply because of the additional degrees of freedom in

the fit. The Bayesian Information Criterion (BIC) allows

one to account for the effect of these additional para-

meters (Kendall & Ord, 1990):

BIC ¼ �2LLþ K lnðnÞ; ð7Þ

where LL is the log likelihood, K is the number of free

parameters in the model, and n is the number of data

points used in the optimization (in this case, 2894). The

model with the lower BIC is considered to be better.

Even after accounting for the greater number of para-

meters in this way, the seasonal RH model is still judged

to be slightly better than the base model (Table 3).

The improved performance of this modified model is

achieved by introducing significant differences in both

the base respiration rates (KH,w and KH,c) and the

respiration Q10S (Q10S,w and Q10S,c) in warm and cold

soils (Table 5). The retrieved base respiration rate in

warm soils was slightly lower than the base rate in the

model with a single set of soil respiration parameters,

and the retrieved rate in cold soils was significantly

higher. Both retrieved Q10S in the modified model were

higher than the Q10 in the base model. The retrieved Q10

in cold soils was significantly higher than that in warm

soils, consistent with process studies in cold region soils

(Mikan et al., 2002). The mean monthly differences in

predicted NEE between the seasonal RH model and the

base model show the same general patterns for both

daytime and night-time points. At both times of day, the
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seasonal RH model predicts more negative NEE (less

respiration) during the growing season, and more po-

sitive NEE (more respiration) outside the growing

season (Fig. 10).

The Lloyd-and-Taylor model did not, however, lead

to a significantly different maximum likelihood from

that of the base model (Table 3). Thus, simply using a

function that causes a continuous increase in the tem-

perature sensitivity of soil respiration with decreasing

temperatures does not allow a better model-data fit.

More substantial changes – such as allowing seasonally

varying respiration parameters – are needed to achieve

this better fit. This is consistent with observations at the

site that both substrate type and microbial communities

differ between the seasons, which might cause a dis-

continuous response rather than one continuously

scaled to temperature (Lipson et al., 2002; Scott-Denton

et al., 2005).

The optimization on the litter model actually yielded

a worse model-data fit than that on the base model

(Table 3). If the parameters are unbounded, adding

extra free parameters can only lead to an improvement

in fit. Specifying bounds on the parameters, however,

can force a worse fit, and this is what happened in our

experiment. The two parameters governing litter re-

spiration rate (KB and FR) were both estimated at the

lower ends of their range (yielding low litter respira-

tion), implying that if their ranges were widened, the

retrieved values would be even lower. In fact, even with

the specification of lower bounds on these parameters,

the total litter respiration in the optimized model ended

up being a small fraction (about 5%) of the total hetero-

trophic respiration. This result suggests that a more

complex model structure is required to capture the

subtle effects of litter decomposition and soil carbon

fractionation. Because of the even greater dimensional-

ity this will introduce, additional data constraints will

also likely be required, such as litter decomposition and

isotopic data (Ryan & Law, 2005).

Finally, the optimization on the moisture-indepen-

dent RH model performed only slightly worse than that

on the base model (Table 3). Possible reasons for this are

discussed below in the section on including water

vapor fluxes in the optimization.

Discussion

Parameter estimates

Some retrieved parameter values (Table 4) were signifi-

cantly different from values measured in the field. This
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was often because of correlations between parameters

(Fig. 8). For example, the retrieved value for CL,0, the

initial stock of leaf carbon (564 g C m�2), is significantly

less than the measured value of 1700 g C m�2 (unpub-

lished data). If all other parameters were held constant,

this difference would lead to a large under prediction of

net photosynthesis. However, the retrieved value of CL,0

was strongly correlated with Amax (r 5�0.96). Thus, a

higher value of Amax could compensate for the lower

value of CL,0. Indeed, our retrieved value for Amax

(7.66 nmol CO2 g�1 s�1) is higher than the measured

value for the site (4.5 nmol CO2 g�1 s�1; Huxman et al.,

2003). In addition, the retrieved value of PAR1/2

(7.9 mol m�2 day�1) gives higher rates of photosynthesis

than the value reported by Aber et al. (1996) for needle-

leaf evergreen forests (17 mol m�2 day�1). These trade-

offs illustrate that the optimized model can sometimes

achieve the right answer (i.e. the right fluxes) for the

wrong reason (i.e. using the wrong parameter values).

−0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

J F M A M J J A S O N D

Data

Model
M

ea
n 

N
E

E
 d

iff
er

en
ce

, n
ig

ht
tim

e
m

in
us

 d
ay

tim
e 

(g
 C

 m
−2

 d
ay

−1
)

Fig. 6 Monthly mean diurnal cycle (night-time net ecosystem

exchange of CO2 (NEE) minus daytime NEE) in observations

and optimized base model. Error bars show one standard

deviation of the five (for January–October, 1999–2003) or six

(for November and December, 1998–2003) annual means for

each month. Positive NEE denotes net loss of CO2 from the

ecosystem to the atmosphere.
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on the base model. Points show the mean and error bars show two standard deviations across the entire ensemble of parameter sets

retrieved from the optimization (n 5 168 150). (a) and (b) show the modeled and observed NEE time series for daytime and night-time
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Using a synthetic data set generated with known

parameter values, however, Braswell et al. (2005) found

that this optimization approach applied to a similar

model was able to retrieve nearly correct values for the

majority of the parameters. This conclusion held even

when a relatively large white noise was added to the

data. Thus, with the exception of parameters that are

highly correlated, the parameter optimization seems

able to retrieve the correct (i.e. truly optimal) values of

most parameters. However, the optimal values at the

spatial scale of the tower footprint and the temporal

scale of half a day may differ from values measured in

the lab, or values measured at a smaller scale in the

field.

Diagnosing systematic errors

The optimized model is able to capture the basic cyclic

controls on NEE (diurnal and seasonal) in this ecosys-

tem, but it still fails to capture many of the sources of

variability. This is especially apparent for night-time

respiration (Fig. 5). Although the model does a good job

of predicting the observed temperature sensitivity of

respiration, there is much more variation in observed

than in predicted NEE. The variation in observed NEE

is present even within a given year, so interannual

variability alone cannot explain the model-data mis-

match. One likely cause of this variability is changes in

substrate availability (Giardina & Ryan, 2000; Ryan &

Law, 2005). Scott-Denton et al. (2005) have shown that

the types of substrates available to drive both the

heterotrophic and rhizospheric components of soil re-
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spiration vary seasonally and interannually, and vary

with regard to their effects on either component. We

attempted to better model these changes in substrate

availability, and the resulting additional dynamics of

soil respiration, by splitting the soil into a fast-turnover

litter pool and a slow-turnover soil pool. The simple

modification applied here, however, did not allow an

improvement in model-data fit (Table 3). The fact that

the optimization forced the respiration of the new litter

pool to near-zero also indicates that the manner in

which we represented turnover of the different pools

was too simple and thus unrealistic. One of the surpris-

ing results to emerge from the study by Scott-Denton

et al. (2005) is the presence of relatively high concentra-

tions of tree-derived sucrose in the soil during the

winter. The presence of such a labile carbon source at

a time when the photosynthetic activity of the forest is

at a minimum is not captured in the current model. It is

likely that the sucrose is used in winter freeze protec-

tion and leaks from the shallow roots as a result of

wintertime mechanical damage. A more realistic soil

pool parameterization will require more explicit repre-

sentation of rhizospheric control over specific dissolved

organic compounds in the soil.

One of the most noticeable errors in the optimized

model predictions is that they underestimate mid-sum-

mer night-time respiration (Figs 2b and 3d). This error

could arise because two different temperature sensitiv-

ities – intraseasonal and interseasonal – are modeled

using a single Q10 value in the base model. Specifically,

the fact that the model underestimates respiration when

the soil temperatures are warmest suggests that the

optimized intraseasonal temperature sensitivity is too

low. This could occur if the optimum interseasonal

temperature sensitivity is lower than the optimum

intraseasonal sensitivity, forcing the single Q10 to com-

promise between the two. One possible cause for differ-

ences between seasons is that there may be different soil

microbial communities in the summer and winter, as

suggested by Lipson et al. (2002). Another possibility, as

mentioned above, is missing substrate dynamics in the

model, such as the presence of high concentrations of

tree-derived sucrose in the winter (Scott-Denton et al.,

2005). The fact that the seasonal RH model was able to

match the data better than the base model lends support

to at least one of these hypotheses.

The parameter values retrieved from the optimization

on the seasonal RH model suggest that there is, indeed,

higher temperature sensitivity within seasons than be-

tween seasons. The optimum values of both Q10 values

(for warm soil and cold soil) are higher than the

optimum value for the single Q10 in the base model.

Furthermore, the base respiration rate (at 0 1C) in cold

soils is about three times higher than the base rate in

warm soils (Table 5). This could indicate that there is

more substrate available in the winter, and that this

effect is not captured by the model’s dynamics. Recent

observations by Scott-Denton et al. (2005) have shown

that soil microbial biomass exhibits both winter and

summer maxima and, as discussed above, soil-dis-

solved organic carbon concentrations generally, and

sucrose concentrations specifically, are relatively high

during the winter. These observations are not repre-

sented in the current version of the model.
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Fig. 10 Differences in the mean monthly net ecosystem ex-

change of CO2 (NEE) predictions between the optimized base

model and the optimized seasonal RH model (expressed as

seasonal RH minus base). Error bars show one standard devia-

tion of the five (for January–October, 1999–2003) or six (for

November and December, 1998–2003) annual means for each

month. Positive NEE denotes net loss of CO2 from the ecosystem

to the atmosphere.

Table 5 Heterotrophic respiration parameters retrieved from

optimization on model with seasonally varying RH

Parameter Best value Mean value

KH,w (g C g�1 C yr�1) 0.006 0.007 � 0.001

KH,c (g C g�1 C yr�1) 0.017 0.020 � 0.005

Q10S,w 1.91 2.08 � 0.36

Q10S,c 5.75 5.07 � 0.75

Tc( 1C) 0.42 0.41 � 0.01

KH,w and KH,c are the base respiration rates at 0 1C and with

moisture-saturated soil for warm and cold soils, respectively.

Q10S,w and Q10S,c are the respiration Q10S for warm and cold

soils, respectively. Tc is the temperature below which the cold

soil parameters are used. The ‘Best value’ column reports the

parameter values from the parameter set that yielded the

highest likelihood in the Markov chain Monte Carlo parameter

estimation. The ‘Mean value’ column reports the estimated

posterior mean and standard deviation of each parameter,

generated from 152 382 parameter sets that yielded approxi-

mately equally good model-data fits. For comparison, the

parameter optimization on the base model yielded optimum

values of KH and Q10s of 0.009 g C g�1 C yr�1 and 1.50, respec-

tively.
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It is interesting to note, however, that the changes in

the mean monthly night-time NEE with seasonally

varying soil respiration (Fig. 10) are often in the oppo-

site direction of what would be needed to correct for the

mean monthly error between the base model and the

data (Fig. 2b). In contrast, these changes in the mean

monthly NEE are usually in the right direction to

correct (partially) the daytime errors. This could indi-

cate that at least some of the improvement observed

with the seasonal RH model may be correcting for

model errors in other flux components, such as photo-

synthesis.

Effects of including water vapor fluxes in optimization

Including H2O fluxes in the optimization did not pro-

vide additional information about the separation of

NEE into GPP and R (Fig. 9). This suggests that this

partitioning is already near-optimal because SIPNET

models daytime and night-time fluxes separately. As

parameters governing GPP have no direct influence

over night-time NEE, night-time data provide a strong

constraint only on parameters governing R. Daytime

data provide a strong constraint on GPP-related para-

meters, and probably provide a relatively weaker con-

straint on R-related parameters. Thus, it is instructive to

think of the optimization as occurring in two steps:

night-time fluxes determine the R-related parameters

and then, given these R-related parameters as fixed,

daytime fluxes determine the GPP-related parameters.

(However, it is important to note that, in reality, both

daytime and night-time data are considered simulta-

neously in the optimization, assuring consistency be-

tween the optimized GPP and R-related parameters.)

Thus, by modeling daytime and night-time fluxes se-

parately and considering both sets of fluxes in the

optimization, we are able to separate NEE into GPP

and R, even when only CO2 fluxes are used in the

optimization.

Similarly, including H2O fluxes in the optimization

did not lead to lower pair-wise parameter correlations

(Fig. 8). In the optimization on the base model, there

were no instances of high correlations between a GPP-

related parameter and an R-related parameter; one

would expect to see such correlations if the model

was run at a time step of days or longer. In the case of

correlations between two R-related parameters, neither

parameter will have any direct effect on evapotran-

spiration, so H2O fluxes can provide little information

to break these correlations. GPP-related parameters, on

the other hand, have the same effect on transpiration as

on photosynthesis (in the absence of water stress), so

again, H2O fluxes can provide little information to

break correlations between two GPP-related para-

meters. Thus, the addition of H2O fluxes in the optimi-

zation provides information mainly about parameters

that directly govern evapotranspiration in the model.

Including H2O fluxes in the optimization did, how-

ever, lead to differences in the optimal separation of R

into RA and RH, with more RA and less RH (Fig. 9). As

these data can provide no direct information about R,

the decrease in RH is because of indirect effects. These

effects are imposed through differences in the opti-

mized soil moisture dynamics when H2O fluxes are

included in the optimization. In the optimization on

CO2 alone, soil moisture remains fairly constant over

time; in the optimization on both fluxes, soil moisture is

more variable (Fig. 4). The soil moisture dynamics

imposed by optimizing on H2O fluxes are different

from those needed to describe correctly the effects of

soil moisture stress on soil respiration. Thus, in order to

match both the observed H2O fluxes and the observed

CO2 fluxes, RH must be decreased to reduce the impact

of this erroneous representation. However, measured

soil wetness for 2002 and 2003 at the site shows patterns

more similar to the optimization on both fluxes (data

not shown). Thus, the decrease in RH when soil moist-

ure is more variable indicates not that this increased

variability is incorrect, but that it is incorrect to model

RH using a linear dependence on fractional soil wetness

at this site Eqn (A2).

For similar reasons, the optimum model-data fit did

not change significantly when RH was made indepen-

dent of soil moisture (Table 3). Although we expected

this modification to lead to a greater model-data mis-

match, this result is not too surprising given that the

optimized base model showed little or no water stress

on heterotrophic respiration throughout most of the

simulation (Fig. 4). Again, this does not imply that soil

moisture has no effect on heterotrophic respiration at

this site. Rather, the linear dependence used in SIPNET

Eqn (A2) seems to be the wrong model for this depen-

dence. Lee et al. (2004) have shown, for example, that

soil respiration responds relatively quickly and transi-

ently to precipitation events. At the Niwot Ridge site,

observations have shown that although soil respiration

is dependent on soil moisture, this is primarily an

interannual dependence, not a seasonal dependence,

despite the large seasonal variability in soil moisture

(Monson et al., 2002; Scott-Denton et al., 2003; Scott-

Denton et al., 2005). More complex processes and inter-

actions may control interannual variation (Schimel et al.,

2005; Ryan & Law, 2005). It is possible, for instance, that

the observed effects of soil moisture on soil respiration

are due more to indirect effects on substrate availability

than direct effects of climate. For example, wetter soils

may allow greater photosynthesis, which stimulates soil

respiration by providing more carbon directly to the
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rhizospheric community and indirectly to the hetero-

trophic component (in the form of root turnover).

Conclusions

This modeling study at Niwot Ridge demonstrates that

model-data synthesis can increase the usefulness of

eddy covariance flux measurements for understanding

respiration. Optimization of model parameters in a

process model is a strong alternative approach to sta-

tistical curve fitting for partitioning NEE into its com-

ponent fluxes. In doing so, the partitioning is clearly

traceable to specific biological assumptions and can

incorporate dynamic responses of the system. There

are strong reasons for beginning the model-fitting pro-

cedure with a simplified model, allowing model-data

mismatches to guide model development. This iterative

approach allows a fairly direct assessment of which

processes the data do and do not constrain. When

performing a parameter estimation, the model’s dimen-

sionality should be carefully assessed relative to the

dimensionality in the data to avoid overfitting. It is

probably counterproductive to begin with a model so

complex that the initial fit lacks systematic error; in-

stead, it is critical to maintain a model structure that is

falsifiable and this is difficult if the initial model is

subject to overfitting.

By coupling a parameter optimization with a formal

model selection criterion, we were able to test hypoth-

eses by making small modifications to the base model

and examining their effects on the optimized model-

data fit. One key finding that emerged from such an

experiment is that photosynthesis, and possibly foliar

respiration, are shut down when the soil is frozen in this

evergreen forest. This result supports similar findings

reported by Hollinger et al. (1999) and Monson et al.

(2002). Another result that emerged from a model

modification experiment is that the metabolic responses

of the microbial community in the summer and winter

probably vary, supporting findings by Lipson et al.

(2002) and D. A. Lipson et al. (unpublished data).

Summer respiration may be largely driven by exudation

of labile compounds into the soil by roots, while win-

tertime respiration may derive more from longer-lived

compounds. However, at least some of the improve-

ment observed with this model modification may have

been correcting for errors in other model components,

such as photosynthesis. Furthermore, although includ-

ing a seasonal effect on RH parameters reduced model

error, substantial unexplained variability in respiration

remained. Recent literature indicating a tight coupling

between plant timing of root exudation and respiration

suggests that a new type of allocation model may be

needed to improve this aspect of the model fit (Ryan &

Law, 2005).

The application of optimization and data assimilation

techniques has emphasized the use of CO2 concentra-

tion and flux data but several papers emphasize the

simultaneous use of multivariate data: the so-called

‘multiple constraints’ approach (Barrett, 2002; Reich-

stein et al., 2003; Wang & Barrett, 2003). While in the

long run the use of multiple constraints is essential, in

this study a straightforward addition of a second key

data set (H2O flux) did not aid in the accurate modeling

of CO2 fluxes, and by some measures actually degraded

the solution. This likely reflects – in part – the lack of

independence in the data and data errors (as both flux

measurements are made using the eddy covariance

technique). Next-generation multiple constraint models

will require a much more sophisticated treatment of

data error and error covariance.

The next challenge in model-data synthesis is to

diagnose explicitly controls over long-term variability.

Work to date (Braswell et al., 2005; this work) has

provided an improved quantitative understanding of

controls on the diurnal and seasonal time scales and

clarifies several issues critical for moving to longer time

scales, such as controls over plant and soil respiration

linked to seasonality. However, direct analysis of inter-

annual and longer-term variability will require adding

key mechanisms, longer data records, and a multiple

constraints approach. It is likely that an interannual

model will have to include a process-level allocation

scheme (Ryan & Law, 2005) and a nitrogen cycle (Schi-

mel et al., 2005). Additional data constraints for longer

time scales may include dendrochronology, allocation

and litterfall data, isotopic allocation and turnover

estimates, and soil carbon fraction and biomass incre-

ment measurements. It can be difficult to separate the

effects of substrate dynamics from those of environ-

mental controls on respiration and photosynthesis, be-

cause these fluxes depend on the product of these two

types of effects. The incorporation of measurements of

substrate dynamics into a model-data synthesis will

allow this separation. However, while multiple con-

straints will be needed to simulate and diagnose inter-

annual and decadal variability, we caution that care

must be exercised in fitting and diagnosis, especially

when additional data sets are not statistically indepen-

dent of each other.
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Appendix: Model Description

SIPNET contains two vegetation carbon pools (leaves

and wood) and an aggregated soil carbon pool, as well

as a soil moisture submodel (Fig. 1). We ran the model

at a twice-daily time step, with one time step for each

day or night. The initial conditions and fluxes are

governed by 35 parameters (Tables 1 and 2). An earlier

version of SIPNET, which was applied to a deciduous

forest in the northeastern US, is described by Braswell

et al. (2005). Here, we summarize the major components

of the model and describe in detail the changes that

have been made in applying it to the Niwot Ridge

evergreen forest.

Gross photosynthesis (GPP) in SIPNET is determined

as in PnET (Aber & Federer, 1992), as an unstressed rate

modified by four factors, each between 0 and 1: an air

temperature factor, a VPD factor, a light factor, and a

water stress factor. Photosynthesis is assumed to re-

spond quadratically to air temperature, reaching an

optimum at Topt and falling to zero below Tmin. Photo-

synthesis also decreases with VPD2, where VPD is the

atmospheric vapor pressure deficit; the slope of this

relationship is determined by KVPD. The light factor

expresses the amount of light falling on the leaves as a

fraction of the saturated light level. This factor is

determined both by the amount of light falling on the

top of the canopy (PAR) and by the attenuation of light

through the canopy. Light attenuation is computed as

an exponential decay function, assuming that the ver-

tical distribution of leaf area is homogenous through the

canopy. After these three stress factors are applied, a

transpiration demand is computed based on the mod-

ified GPP, the atmospheric VPD, and KWUE. If the

amount of plant-available soil water, calculated as

WR f (where WR is the amount of water in the root zone

and f is a constant), is less than the transpiration

demand, then both photosynthesis and transpiration

are further decreased by the ratio of available water to

transpiration demand.

Unlike the original version of SIPNET, which used a

deciduous phenology (Braswell et al., 2005), the version

of the model used in this study uses an evergreen leaf

phenology. At each time step, leaf carbon is added by an

amount proportional to the mean NPP over the last 5

days. Carbon is lost from the leaves and transferred to

the soil using a constant turnover rate. As in the pre-

vious version of SIPNET, wood carbon is also trans-

ferred to the soil using a constant turnover rate.

Autotrophic respiration in SIPNET is the sum of two

terms: wood maintenance respiration and foliar respira-

tion. Growth respiration is implicitly included in these

terms, both to keep the initial model as simple as

possible and because we did not feel that there was

enough information in the flux data to separate out

these three types of respiration. Both wood and foliar

respiration are modeled as

Rx ¼ KxCxfðTairÞ; ðA1Þ

where Rx is the realized respiration rate, Kx is a base

rate, Cx is the carbon in the given pool (either wood or

leaves), Tair is the air temperature, and f is an exponen-

tial function. Both respiration fluxes use the same Q10

value to relate respiration to temperature (Q10V). Note

that the wood pool in the model represents all wood,

which has the somewhat unrealistic corollary that dead

wood respires. However, this should not lead to large

errors as long as the base respiration rate is expressed as

g C respired per g biomass (rather than per g live

wood), and as long as the ratio of live wood to total
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wood does not change significantly over the course of

the simulation. This method of modeling wood main-

tenance respiration has been used in other ecosystem

models, such as TEM (Raich et al., 1991).

Soil respiration, which represents the respiration of

heterotrophic microbes in the model’s single aggregated

soil pool, is modeled in a manner similar to autotrophic

respiration. A base rate is multiplied by the amount of

carbon in the substrate, and then modified by an

exponential function of soil temperature. The Q10 value

used for this function is different from that used for

autotrophic respiration. Soil respiration is also modified

by a soil wetness function, increasing linearly with soil

moisture (Aber et al., 1997), yielding:

RH ¼ KHCSfðTsoilÞðWR=WR;CÞ; ðA2Þ
where RH is the realized soil respiration rate, KH is the

base rate, CS is the amount of carbon in the soil pool,

Tsoil is the soil temperature, WR is the amount of water

in the root zone, and WR,c is the water-holding capacity

of the root zone. Note that we assume that soil respira-

tion is independent of the surface layer wetness.

The most significant change made in this version of

the model was the inclusion of a more complex water

routine (Fig. 1). At Niwot Ridge, soil moisture is

thought to be a significant determinant of NEE (Monson

et al., 2002); at Harvard Forest, in contrast, vegetation is

thought to experience relatively less water stress (Aber

et al., 1995). In addition, snowmelt dynamics have a

significant effect on NEE at Niwot Ridge (Monson et al.,

2002); consequently, we added a snow accumulation

and melt model to SIPNET.

If the air temperature is above 0 1C precipitation falls

as rain, with some fraction (E) immediately intercepted

and evaporated before entering the soil (the immediate

evaporation flux, EI). An additional fraction (F) of rain

and snow melt (described below) goes directly to drai-

nage (Aber et al., 1995). The remainder is assumed to

infiltrate the soil water surface layer.

If the air temperature is below 0 1C precipitation falls

as snow and accumulates in a snow pack. Sublimation

from the snow pack is based on the equation used in the

SiB2 model (Sellers et al., 1996, their Eqn (33b)):

EP ¼
e�ð0 �CÞea

rd

rcp

g
1

ls
; ðA3Þ

where EP is sublimation from the snow pack, e� (0 1C) is

the saturation vapor pressure at 0 1C (the assumed

temperature of the snow pack), ea is the atmospheric

vapor pressure, r is the density of air, cp is the specific

heat of air, g is the psychrometric constant, ls is the

latent heat of sublimation, and rd is the aerodynamic

resistance between the ground and the canopy air

space, which decreases with wind speed:

rd ¼
Rd

u
; ðA4Þ

where Rd is assumed to be constant and is estimated in

the parameter optimization, and u is the wind speed.

When the air temperature is above 0 1C, snow melts at a

rate proportional to air temperature.

Evaporation from the soil water surface layer is also

based on the equation used in the SiB2 model (Sellers

et al., 1996, their Eqn (34)):

ES ¼
e�ðTsoilÞ � ea

rsoil þ rd

rcp

g
1

l
; ðA5Þ

where ES is soil evaporation, e� (Tsoil) is the saturation

vapor pressure at the temperature of the soil, l is the

latent heat of vaporization, rsoil is a soil resistance term,

and all other symbols are as above. If there is a snow

pack, soil evaporation is assumed to be zero. Sellers

et al. (1996) multiply e� (Tsoil) by hsoil, the relative

humidity of the soil pore space. We dropped this term

to reduce the number of parameters in the model; hsoil is

only significantly less than 1 when the soil is very dry,

and in this case evaporation will be insignificant any-

way. We compute rsoil using the functional form given

by Sellers et al. (1992, their Eqn (19)):

rsoil ¼ eRsoil;1�Rsoil;2�ðWs=WS;cÞ; ðA6Þ

where Rsoil,1 and Rsoil,2 are constants estimated in the

parameter optimization, WS is the amount of water in

the surface layer, and WS,c is the water-holding capacity

of the surface layer, also estimated in the parameter

optimization. Water drains from the surface layer to the

root zone at a rate proportional to the surface layer

wetness. Additional drainage occurs as necessary to

keep the surface layer water content below its water-

holding capacity.

Finally, transpiration removes water from the soil

water root zone as in Braswell et al. (2005). Transpiration

is the smaller of plant-available soil water and tran-

spiration demand (see above). At the end of a time step,

any water remaining in the root zone beyond its water-

holding capacity is removed through drainage.
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