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Spontaneous, internally-generated variability of the climate system is pervasive. On the 
multidecadal time scale it dominates the variability of surface air temperature averaged over 
extratropical land areas as large as the contiguous United States, and it may be strong enough to 
temporarily double or cancel the upward trend in global mean temperature in response to the 
buildup of greenhouse gases. The existence of unforced variability imposes limitations on the 
degree of confidence that can be attached to assessments and predictions of human-induced 
climate change. This chapter summarizes results of some recent studies based on the analysis of 
large ensembles of numerical integrations run with a suite of different atmospheric initial 
conditions but with the same prescribed external forcing scenario. The future trajectory of the real 
climate system is, in some sense, like the trajectory of an individual member of such an ensemble. 
The diversity of the trends among the different ensemble members is a measure of the irreducible 
uncertainty inherent in projections of future climate change. It is shown how statistical methods 
can be used to diagnose the causes of this diversity, most of which is in response to member-to-
member diversity in the atmospheric circulation trends, as reflected in the associated patterns of 
the sea-level pressure trends. Interactions between the atmosphere, oceans, and land also 
contribute to the variability of surface air temperature trends on the multidecadal time scale, as 
discussed in Chapters XX and XX. It is argued that in the face of such large uncertainties in the 
attribution of climate change in the extratropics, more attention should be focused on climate 
change in the tropics and on the broader suite of environmental issues that impact food security 
and the viability of ecosystems. 
 

1.  Introduction 

Many questions concerning the nature and 
causes of climate variability on the 
multidecadal time scale are still unresolved. 
For example, there is no consensus within the 
scientific community as to whether time-
varying forcing associated with aerosols or 
whether a strengthening of the Atlantic 

Meridional Overturning Circulation was 
mainly responsible for the mid-20th century 
hiatus and the recent slowdown in the rate of 
global warming. Nor is it clear why the Arctic 
has experienced rapid warming during the past 
decade while surface air temperatures over the 
Northern Hemisphere as a whole warmed less 
than in the two prior decades, or why 
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wintertime temperatures over the Northern 
Hemisphere continents poleward of 40°N 
warmed three times as rapidly as global-mean 
(land plus ocean) annual-mean surface air 
temperature during the late 20th century (e.g., 
see Trenberth et al., 2007). These large spatial 
and temporal differences in the rate of 
warming stem from the fact that the climate 
system is varying on the multidecadal time 
scale in response to its own internal variability 
as well as to a variety of natural and 
anthropogenic forcings. It is often difficult to 
distinguish between internally generated low 
frequency climate variability and human-
induced climate change. In the words of the 
Technical Summary of the IPCC’s Fourth 
Assessment Report, “Difficulties remain in 
attributing temperature changes at smaller than 
continental scales and over time scales less 
than 50 years.” (Solomon et al. , 2007). These 
ambiguities can be expected to persist until the 
signature of human-induced climate change 
becomes large enough to stand out clearly 
above the natural “background variability”, as 
is projected to occur in the second half of this 
century (Deser et al., 2012). 

The causes of surface air temperature 
(SAT) trends over the continents can be 
formally separated into the four categories 
listed in Fig. 1, which are arranged in the form 
of a 2 x 2 matrix, the columns separating 
thermodynamically- versus dynamically-
induced variability and the rows separating 
forced versus free variability. In this 
terminology, thermodynamically-induced 
refers to SAT changes induced by time-
varying radiative fluxes or by time-varying 
fluxes of sensible and latent heat at the Earth’s 
surface, exclusive of any concomitant changes 
in the atmospheric circulation and 
dynamically-induced denotes SAT changes 
attributable to changes in the atmospheric 
circulation, irrespective of their cause. The 
term forced refers to externally imposed 
changes in the Earth’s energy balance, 
including both anthropogenic influences and 
natural forcings such as volcanic eruptions, 
solar variability and, on long time scales, 
orbital changes. Much of the emphasis in the 
IPCC assessments and the related literature 
has been on forced, thermodynamically-
induced trends in global-mean temperature 

 

Fig. 1. A scheme for categorizing the factors that contribute to trends in regional surface air temperature. See text for 
explanation. 
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(the upper left box in Fig. 1). This is the 
simplest of the four categories because it does 
not require a knowledge of the atmospheric 
circulation. There are many interesting and 
important scientific questions that can be 
addressed within the context of this single 
category, including many of those relating to 
the important issue of climate sensitivity. 
However, we will argue in this chapter that for 
attribution of regional and perhaps even global 
climate trends on the multidecadal time scale, 
the other three categories need to be 
considered as well. 

If the global atmospheric circulation 
changes systematically in response to human-
induced global warming or natural forcings, it 
will result in further SAT changes that can be 
said to be dynamically-induced (the upper 
right box in Fig. 1). Examples of dynamically-
induced climate change include a circulation-
induced poleward amplification of the 
temperature trend at the Earth’s surface 
(Alekseev et al., 2005), a widening of the 
tropical Hadley cells (Lu et al., 2007), a 
poleward shifting of the extratropical storm 
tracks (Yin, 2005), and a systematic 
weakening of the tropical circulations (Vecchi 
and Soden, 2007). It has been proposed that 
the “robust response to global warming” 
includes a suite of circulation-related changes 
that can be inferred from basic conservation 
laws (Held and Soden, 2006). Other examples 
of externally forced dynamical responses 
include changes in the wintertime circulation 
over high northern latitudes induced by large 
volcanic eruptions (Robock and Mao 1994, 
Shindell et al. 2000) and changes in the 
monsoon circulations in response to the 
changing meridional profile of insolation 
induced by orbital changes (Kutzbach, 1981). 

Spontaneously occurring changes in the 
amplitude and polarity of preferred 
atmospheric circulation patterns such as the 
Northern and Southern Hemisphere annular 
modes (Wallace and Thompson, 2002) or the 
patterns observed in association with ENSO 
(Nitta and Yamada 1989; Trenberth and 
Hurrell, 1994; Zhang et al. 1997), as 
represented by the lower right box in Fig. 1, 
can also induce regional SAT trends regional 
trends on the multidecadal time scale. The 
amplitude of the dynamically-induced SAT 
changes tend to be much larger over land than 
over sea, because of its lower heat capacity. 
Hence, if the dynamically-induced SAT trends 
project strongly upon the land-sea distribution, 
they may contribute to the hemispherically or 
globally averaged temperature trend; e.g., if 
they were to change in a manner so as to cool 
the oceans and warm the land, that would 
constitute a positive contribution. 
Dynamically-induced warming in response to 
atmospheric circulation changes has been 
invoked to account for the rapidity of the 
wintertime warming over Eurasia and North 
America poleward of 40°N during the late 
20th Century (Hurrell 1996; Wallace et al., 
1995, 1996, Bracco et al. 2004). In most of the 
existing literature on the impacts of the 
unforced (or internal) variability of the climate 
system it is assumed that the associated 
regional or global temperature trends over 
land are mediated by changes in the 
atmospheric circulation. However, it is also 
possible that the temperature trends are 
thermodynamically-induced (the lower left 
box in Fig. 1). For example, tropical mean 
SAT varies in response to the ENSO cycle 
with an amplitude of up to 1°C for the stronger 
events (for example see Fig. 19 of Yuleva et 
al., 1994). These temperature variations are 
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believed to be induced, not by changes in the 
planetary scale circulation, but by the ENSO-
related variations in the surface energy fluxes 
over the equatorial Pacific cold tongue region 
in response to the large variations in sea 
surface temperature (Chiang and Sobel, 2002). 
It has recently been proposed the sea surface 
temperature variations over high latitudes of 
the Atlantic Ocean and the Arctic Ocean that 
occur in association with unforced variations 
in the intensity of the meridional overturning 
circulation on the multidecadal time scale 
might be capable of causing even larger SAT 
variations over Eurasia on the multidecadal 
time scale (Semenov et al., 2010). 

In the world of models, the distinction 
between anthropogenically-forced climate 
change and internally generated, free climate 
variability can be determined from a suite of 
simulations, performed with a single model, in 
which each member is started from a different 
set of initial conditions and run with the same 
prescribed, time-varying external forcings. In 
principle, the trends in the ensemble-mean of 
the simulations can be identified with the 
externally forced climate change “signal” and 
the departures of the trends in the individual 
realizations from the ensemble mean trends 
are attributable to the internal variability of the 
simulated climate system. This methodology 
is useful when the number of individual 
realizations is large enough to ensure a high 
level of statistical significance. However, thus 
far, ensembles sizes in the CMIP simulations 
have been so small that it has been necessary 
to use multi-model ensemble means to obtain 
statistically significant results, in which case 
internal variability and model-to-model 
differences both contribute to the departures of 
the trends in the individual realizations from 

the ensemble-mean trend, rendering attribution 
problematical. 

Just how applicable the results derived 
from the model world are to the real world 
depends upon how well the models run with 
and without various prescribed external 
forcings are able to simulate the internally 
generated low frequency variability of the 
climate system. With only one observed 
climate trajectory that can be used as a basis 
for validating the models, this question cannot 
be answered definitively: it can only be 
addressed in a probabilistic way. Validating 
climate models requires a robust 
characterization of the low frequency 
variability in the historical climate record, 
including temporal means, variance and 
covariance statistics, and spectra. To obtain 
robust estimates of these quantities (i.e., 
estimates with a sufficient number of 
statistical degrees of freedom) it is necessary 
to restrict the analysis to frequencies roughly 
an order of magnitude higher than one cycle 
over the length of the ~100-year-long 
historical record, e.g., through the application 
of a high pass filter. Attribution of variability 
with frequencies lower than this cutoff 
frequency is inherently ambiguous. 
Multidecadal variability falls within this 
“twilight zone” in which attribution can be 
performed only in a probabilistic way. 

Another factor that limits our ability to 
diagnose the decadal-scale variability in the 
climate record is the fact that inherently 
stochastic variability on the interannual time 
scale associated, for example, with the ENSO 
cycle or with large excursions of the Northern 
and Southern Hemisphere annular modes is 
capable of inducing substantial sampling 
variability on the multidecadal time scale. For 
example, it has been questioned whether the 
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so-called Pacific Decadal Oscillation (PDO: 
Mantua et al., 1997) which is alleged to be a 
multidecadal phenomenon is merely a 
manifestation of such stochastic, sampling 
variability (Newman et al., 2003). 

Regardless of the mechanisms that give 
rise to it, multidecadal climate variability 
mediates the rate of rise of global-mean 
temperature. Performing a “dynamical 
adjustment” to remove, or at least reduce the 
contribution of these circulation changes that 
contribute to or detract from the rate of rise in 
global-mean temperature simplifies the space-
time structure of the surface air temperature 
record and renders it more spatially and 
seasonally coherent (Wallace et al., 1995; 
Thompson et al., 2009). 

The existence of internally generated 
sampling variability is well known and is 
discussed extensively in reviews of Barnett et 
al (2005) and Hegerl et al. (2007) and the 
references therein. Various approaches have 
been used to estimate the uncertainty in past 
and projected SAT trends that is attributable to 
such “climate noise”, but the emphasis in 
these studies has generally been on 
establishing the statistical significance of 
historical or projected climate trends rather 
than on the characteristics of the noise itself. 
In many studies the noise is represented as 
formless error bars flanking the observed, 
reconstructed, or projected “signal”. In reality, 
climate noise exhibits distinctive space-time 
structure that can mimic that of human-
induced climate change. Later in this chapter 
we will discuss two relatively recent instances 
in which apparent secular trends deemed as 
having been beyond the range of natural 
variability have subsequently reversed, 
suggesting that they were, in fact, internally 
generated. 

In this chapter we will summarize the state 
of our knowledge of internally generated 
interdecadal variability of the climate system. 
In the next section we will digress briefly from 
the main theme of this chapter to show a 
simple example of how the manner in which 
uncertainty is portrayed graphically can 
prejudice our perceptions of its importance. In 
Section 3 we will show how the interplay 
between free and forced climate variability 
complicates the attribution of global warming 
and regional climate impacts. In Section 4 we 
show examples of the dynamical contribution 
to SAT trends and we demonstrate how 
performing a dynamical adjustment can 
simplify the representation of climate change 
in the historical record. In section 5 we offer a 
few brief comments relating to the internally 
generated thermodynamically-induced 
variability. In Section 6 we discuss the 
implications of internal variability for the 
attribution of extreme events and in the final 
section we summarize and discuss the 
implications of these results more generally. 

 
2.  Insights based on paleoclimate 

reconstructions 

To illustrate the importance of the way in 
which “climate noise”, regardless of its cause, 
is represented, Fig. 2 shows two ways of 
portraying reconstructions of Northern 
Hemisphere surface temperature of the past 
millennium based on proxy data. The first is a 
single multiproxy reconstruction in which the 
uncertainty is represented as error bars. The 
second is a compilation of proxy records from 
a number of different sources in which each 
reconstruction is shown. The two figures 
convey quite different visual impressions of 
how the temperature varied over the course of 
the millennium. In the first ones’ eye is 
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attracted to the reconstruction itself, which 
shows a slow cooling up until around the year 
1900 followed by a much more rapid 
warming. The temperature in the last few 
decades of the millennium is much higher than 
at any prior time. including the so-called 
Medieval Warm Period at the beginning of the 
record. This figure appeared in the Summary 
for Policymakers of the IPCC’s Third 
Assessment Report (reference) and has 
become widely know in the popular media as 

“the hockey stick”, reflecting the linear 
character of the time series before and after 
1900. The second version conveys a more 
powerful impression of the uncertainty 
inherent in the reconstructions because it 
invites the viewer to consider a number of 
different plausible temperature scenarios all of 
which exhibit strong autocorrelation and 
hence, not many temporal degrees of freedom. 

In this example there is only one true 
temperature scenario. The diversity of the 

 

 

Fig. 2  (a) Multiproxy climate reconstruction of Northern Hemisphere surface temperature that first appeared in Mann et 
al. (1999) was featured in IPCC (2001). The reconstruction is in blue, the instrumental temperature record in red, and 
error bars are indicated by the envelope of gray shading, (b) Individual reconstructions of Northern Hemisphere surface 
temperature by six different research teams. Each curve is subject to a somewhat different set of uncertainties that 
generally increase going backward in time (as indicated by the gray shading). From the summary section of North et al. 
(2006).  
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individual reconstructions in the lower panel is 
due to the differences in the reconstruction 
methodologies and the data they are based on. 
In subsequent sections of this chapter we will 
focus on the diversity of temperature trends in 
climate simulations that is attributable to 
internal variability of the climate system. 
Rather than representing the diversity in terms 
error bars, as in most of the existing literature 
and in Fig. 2a, we will explicitly consider 
specific temperature scenarios, as in Fig. 2b. 

3.  On the role of internally-
generated climate variability in 
climate change 

In this section we will discuss the role of 
internally-generated climate variability in 
climate change on space scales ranging from 
regional to global. We will begin in Section 

3.1 by considering the diversity and spatial 
patterns of surface air temperature (SAT), sea 
level pressure (SLP) and precipitation trends 
in a 40 member ensemble of simulations run 
with Version 3 of the Community Climate 
System Model (CCSM3) forced with the A1B 
greenhouse gas scenario initialized in 2000 
and integrated forward in time through 2060. 
Details of the model simulations may be found 
in Deser et al. (2012a). Then in Section 3.2 we 
will show and discuss observations and 
simulations of global warming during the 20th 
Century.  

3.1.    Insights derived from 
projections of future trends 

As background for the discussion in this 
subsection we show in Fig. 3 the ensemble 

Fig. 3. DJF sea level pressure (SLP) and surface air temperature (SAT) trends for 2005-2060 in a 40-member 
ensemble of simulations with the CCSM3 climate model. Left panels show DJF ensemble mean SLP (top) 
and SAT (bottom) trends. Right panels show the corresponding standardized trends, computed by dividing the 
ensemble mean trend at each grid point by the standard deviation of the 40 ensemble mean trends at the same 
grid point. After Deser et al. (2012a). 
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mean of the 56 year (2005-2060) December-
February (DJF) SLP and SAT trends in the 40 
member CCSM3 ensemble in raw (hPa / 56 
yrs; °C / 56 yrs) and standardized form (left 
and right columns, respectively). The SLP 
trends in the ensemble mean map range up to 
several hPa (e.g., off the west coast of Canada) 
but with the exception of a few patches in the 
tropics, they are generally much less than one 
standard deviation and therefore may be 
interpreted as sampling fluctuations. In 
contrast, the ensemble mean SAT trend (Fig. 
3d) exhibits a robust global warming signal, 
with an average warming of 2-3 standard 
deviations over the Northern Hemisphere 

continents. In agreement with observations, 
the “signal to noise ratio” of the warming 
trend is larger in the tropics than at higher 
latitudes (Mahlstein et al., 2011, 2012). 

Figure 4 shows the 2005-2060 wintertime 
(December-February: DJF) SAT trend maps 
over North America for individual members of 
the same 40 member ensemble. Apart from a 
predominance of warming with a tendency for 
polar amplification, the patterns are 
remarkably diverse, considering that the trends 
extend over a 56 year interval. For example, 
note that the warming over the United States is 
much stronger in Ensemble Member #22 than 
in Member #4. 

Fig. 4. 2005-2060 surface air temperature trends in ensemble members of 40-member set of integrations with the 
CCSM3. Adapted from Deser et al., (2012b). 
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All ensemble members in this experiment 

Fig. 5. Partitioning of the 56-year temperature trends in Ensemble Members #4 and #22 into a component forced by the 
buildup of greenhouse gases and a residual trend attributable to internally generated variability. Adapted from Deser et 
al. (2013b). 

Fig. 6. (Left panels) DJF temperature trends during 2005-2060 (°C per 56 years). Top panel shows the average of the 
40 model runs (all values are statistically significantly different from zero at the 5% confidence level); middle and 
bottom panels show the model runs with the largest and smallest trends for the contiguous U.S. as a whole, 
respectively. (Middle panels) DJF temperature time series for selected cities (marked by open circles in the left panels), 
the contiguous U.S. and the globe (land areas only). Black curves show observed records from 1910-2008 (minus the 
long-term mean); red and blue curves show model projections for 2005-2060 from the realizations with the largest and 
smallest future trends, respectively, for each location or region. Dashed red and blue lines show the best-fit linear 
trends to the red and blue curves, respectively. For visual clarity, the model projections are matched to observations 
averaged over their common period of record 2005-2008. (Right panels) Distribution of projected DJF temperature 
trends (2005-2060) across the 40 ensemble members at the locations shown in the middle panels. The vertical axis is 
shared with the middle panels and indicates the linear trend in units of °C per 56 years. From Deser et al., (2012b). 
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share a common prescribed forcing, the 
response to which is indicated by the 
ensemble-mean trend. The difference between 
the ensemble mean trend and the trend in an 
individual ensemble member is attributable to 
natural (i.e., internally generated) variability, 
as illustrated graphically in Fig. 5 for the 
contrasting Ensemble Members #4 and #22. 
The internally generated variability in the 56-
year trends in these members is as large as the 
forced component of the variability. The 
diversity of the trends in the individual 
ensemble members in Fig. 4 is entirely 
attributable to this internally generated 
variability. 

Figure 6 shows selected time series of 
SAT in Ensemble Members #4 and #22. The 
global-mean temperature trend (land areas 
only) is quite comparable in the two ensemble 
members but the regional and local trends over 
the United States have a profoundly different 
character. In Member #22 average warming 
over the contiguous United States over the 56 

year period is ~3°C, whereas in Member #4 it 
is only ~1°C— and cooling occurs over parts 
of the Pacific Northwest and the northern 
Rockies. 

The patterns shown in Figs. 4-6 are for the 
boreal winter season December through 
February (DJF) when the internally generated 
variability is greatest. However, the spatial 
patterns in individual members of the CCSM3 
40-member ensemble also exhibit substantial 
diversity during the boreal summer June-
August (JJA), as shown in Fig. 7. The 
contrasts between outliers are not as large as 
during winter but they are still appreciable.  

In the summertime precipitation trends 
based on the same 40 member ensemble, most 
ensemble members exhibit positive trends 
over Canada and Alaska, but a wide member-
to-member diversity of the rainfall trends over 
the continental United States. The two 
examples shown in Fig. 8 portray sharply 
contrasting future rainfall trends over the 
Great Plains and Midwest relative to the 2005-

Fig. 7. As in Fig. 6 but for Ensemble Members 3  and 31, the most contrasting runs in JJA. From Deser et al., (2012b). 
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2008 rainfall climatology in that ensemble 
member. Large ensembles are required to 
detect statistically significant precipitation 
trends in simulations with climate models and 
there is no guarantee that nature will conform 
to the ensemble-mean projection. It follows 
that unless the CCSM is seriously 
underestimating the role of soil moisture 
feedbacks, regional precipitation trends forced 
by the buildup of greenhouse gases are not 
likely to become detectable above the 
internally generated background variability in 
the observations until well beyond 2060.  

3.2.    Observed and simulated 20th 
Century trends  

Historical reconstructions of the climate of 
the 20th century provide an even more graphic 
illustration of the inherent difficulties in 

comparing an individual realization (in this 
case, the historical record) with an ensemble 
of numerical simulations. Figure 9 shows 
1970-2005 wintertime surface air temperature 
trends for individual ensemble members of 
suites of historical simulations conducted with 
the CCSM4 and ECHAM5 models. For a 
description of the models and the experimental 
design, see Deser et al. (2013a). CCSM4, 
introduced in 2012, is more advanced than 
CCSM3 in several important respects (Gent et 
al., 2011). The patterns for the historical 
reconstructions are even more diverse than the 
ones shown in Fig. 6 because the interval over 
which the trend is computed is 36, rather than 
56 years, and is thus subject to smaller 
anthropogenic forcing and larger sampling 
variability. The diversity over the Eurasian 
sector (Fig. 9b) is comparable to that over the 
North American sector (Fig. 9a).  

Fig. 8. As in Fig. 6 but for summer  (JJA) precipitation. This figure was not shown in Deser 2012b. 
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In the context of these simulations, the 
observational record is just one of the many 
possible outcomes of the time dependent 
forcing that the climate system has been 
subject to over the past century. Let us now 
consider the observed trends in greater detail. 
Fig. 10 shows time series of observed and 

simulated trends in global mean surface 
temperature including both land and ocean, 
global-mean surface air temperature over land 
and cold season surface air temperature 
poleward of 40°N. The simulations in this case 
are based on the reference interval (5 years 
earlier than the one used in the simulations 

Fig. 9. DJF surface air temperature trends for the reference interval 1970-2005 in a 30-member ensemble of the 
CCSM4 (C1-C30) and 17-member ensemble performed with the ECHAM model (E1-E17). Trends are expressed in °C 
per 36 years.  Ensemble means and the observed trend for this period are shown at the end of the sequence of maps.  (a) 
North American sector. From Deser et al. (2013a). 
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described in Fig. 9, but 30 out of the 36 years 
of the two records are overlapping. Both 
intervals 1965-2000 and 1970-2005 were 
marked by pronounced warming that was 
more rapid over land than over the oceans and 
was particularly large over the high latitude 
Northern Hemisphere continents during the 
boreal cold season. 

The GST time series based on the multi-
member ensemble mean of the CMIP 
simulations closely tracks the observations 
during the reference period 1965-2000 but it 

fails to capture the flattening of the curve in 
the past decade. As of the end of 2012 the 
projections were ~0.4°C higher than the 
observed GST. Figure 11 shows the spatial 
distribution of the observed 1965-2000 SAT 
trends during the boreal cold and warm 
seasons together with multi-model ensemble 
means of numerical simulations that were used 
as a basis for the Fourth Assessment Report of 
the IPCC: it includes nine different models 
with ensemble sizes ranging from 1 to 5. 
Consistent with the modeling results presented 

Fig. 9. Continued (b) Eurasian sector 
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in the previous subsection, the multi-model 
ensemble mean trends are much more spatially 
homogeneous than the observed trends, 
particularly over high northern latitudes during 
the boreal cold season. The observed warming 
trends over Siberia and Canada during this 
interval, which ranged up to ~3°C per 36 years 
century, were an order of magnitude larger 
than the mean rate of global (GST) warming 
during the 20th Century (~0.08°C per decade). 
They are also larger and extend farther 
southward than the corresponding multi-model 
ensemble mean trends shown in the right hand 
column of Fig. 11. Hence, it seems quite likely 
that the enhancement of the warming was 
either thermodynamically- or dynamically-
induced by the free (internally generated) 
variability of the climate system; i.e., the 
categories listed in the bottom row of Fig. 1. 

Over the 91-year-long reference interval 
1920-2010 the regional SAT trends shown in 
Fig. 12, as expressed in °C per decade, are 
smaller than those for the shorter reference 
interval shown in the previous figure, but they 
still range up to nearly 3°C per century, about 
three times the GST trend. The heterogeneity 
of the trends during the boreal winter, and the 
fact that they are so much larger than the 
corresponding warm season trends shown in 
the lower panel suggest that even on this 
extended time scale, the internal variability of 
the climate system makes an important 
contribution to the observed trends.  

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

1900  1920  1940  1960  1980  2000  
Year

a) GST

b) GSAT

 c) N SAT (boreal winter)

Fig. 10. Observed (solid) and multi-model ensemble 
mean (MMEM) (dotted) temperature anomaly time 
series with respect to the 1965–2000 reference period 
(indicated by light gray shading) for (a) annual-mean, 
global-mean surface temperature (GST), (b) annual-
mean, global-mean land temperature (GSAT), and (c) 
boreal cold season land temperature poleward of 40°N. 
Tick marks on the abscissa denote intervals of 0.5°C. 
Observations from NOAA merged ocean land surface 
temperature dataset. Model data based on AR4 (CMIP3) 
historical simulations in which ozone depletion and 
volcanic aerosols are included as part of the forcing 
(1900–1999) and SRES A1B simulations (2000–2012). 
Adapted from Wallace et al. (2012). 
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4.  Assessing the dynamically-
induced variability 

As noted in the Introduction, dynamically-
induced variability of SAT and rainfall (i.e., 
variability attributable to the time-varying 
atmospheric circulation) is not identical to the 
internally generated variability for two 
reasons: (1) anthropogenic forcing can induce 
changes in the atmospheric general circulation 
and (2) internal variability of the climate 
system would be capable of inducing changes 
in SAT, even in the absence of circulation 
changes. These distinctions are reflected in the 
categories of causal mechanisms in Fig. 1. But 
despite these caveats, it appears that much of 
the internally generated variability in the SAT 
field is mediated by changes in the 
atmospheric circulation. To illustrate this 
point, we reexamine Ensemble Members 4 and 

22 

from the CCSM3 40-member ensemble, 
whose SAT fields were depicted in Figs. 4, 5, 
and 6, but here in Fig. 13a,b we show them 
together with the corresponding trends in the 
sea level pressure (SLP) field. The SLP trend 
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Fig. 11. Maps and zonally averaged meridional profiles showing rates of warming (i.e., the linear trend) over the 
historical reference interval 1965–2000 expressed in units of °C per 36 years: (a,b) boreal cold season; (c,d) boreal 
warm season. Left column (a,c) based on observations (NCDC MLOST) and right column (b,d) the multi-model 
ensemble mean of the AR4 simulations. From Wallace et al.(2012). 
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Fig. 12. Observed rates of warming in SAT over the 
historical reference interval 1920-2010 (i.e., the linear 
trend) expressed in units of °C per 91 years: (a) boreal 
cold season; (b) boreal warm season. Based on NCDC 
MLOST dataset. 
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in Member 4 are in the sense as to make the 
low level flow more northerly over much of 
the contiguous United States, which would 
favor colder weather. In contrast, the trend in 
Member #22 is toward stronger low level 
westerlies, which would tend to favor the 
prevalence of mild, maritime air masses from 
the Pacific. It is notable that the SLP trends in 
these “outlier” members of the 40 member 
ensemble are much larger than the ensemble-
mean SLP trend shown in Fig. 3a. It is evident 
from Fig. 3b that this is true even of randomly 
selected members; i.e., the 56-year trends at 
most grid points are less than 0.5 standard 
deviation.  

Is it merely chance coincidence that the 
SLP trends in Ensemble Members 4 and 22 
are dynamically consistent with the 
contrasting SAT trends over the continental 
United States? To address this question we 
show in Fig. 13c the pattern of DJF SLP 
trends regressed on the standardized SAT 
trends averaged over the continental United 
States in the other individual ensemble 
members. That the SLP patterns in Figs. 13c 
and 13d are similar confirms the inference that 
the differences in the SAT trends in the 
individual ensemble members are at least to 
some degree dynamically induced. 

Fig. 13. (a,b) 2005-2060 DJF SAT trends in Ensemble Members 4 and 22 of the CCSM3 40-member ensemble, 
indicated by colored shading with superimposed sea level pressure (SLP) trends (contours). Contour interval 1 hPa per 
56 years. The zero contour is bold and dashed contours indicate SLP falls. (c) trends in the individual ensemble 
members shown in Fig. 4 (exclusive of #4 and #22) regressed on the 38 corresponding raw SAT trends averaged over 
the continental US. (d) The difference between (a) and (b), same color bar and contour interval.  
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Analogous results for ensemble members 

Fig. 14. As in Fig. 13, but for SAT and SLP in JJA, contrasting the two ensemble members that exhibit the weakest 
(#3) and strongest (#31) SAT trends averaged over the contiguous US. Contour interval 1 hPa per 56 years. The zero 
contour is bold and dashed contours indicate SAT falls. 

Fig. 15.  As in Fig. 14, but for SAT and 500 hPa height in JJA. The contour interval is 12 m per 56 years. 
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with contrasting summertime 2005-2060 SAT 
trends are shown in Fig. 14. These runs exhibit 
contrasting patterns of SLP trends over the 
North Pacific and over the Canadian Arctic, 
but distinctions between the warm and cold 
patterns are not as clearly discernible over the 
contiguous US. That the JJA SLP trends in the 
other 38 ensemble members regressed upon 
the respective SAT trends averaged over the 
continental United States yields a similar 
pattern lends credence to the existence of a 
dynamical influence upon the SAT trends in 
the individual ensemble members in summer 
as well as in winter.  

The corresponding 500 hPa height trend 
charts shown in the lower panels of Fig. 15 
also exhibit positive centers of action over the 
North Pacific and negative centers along the 
coast Arctic, but in contrast to the SLP trend 
charts in the previous figure, the ensemble 

members with stronger warming also exhibit 
stronger 500 hPa height rises over the 
contiguous United States. The pattern in Fig. 
15c, including the features remote from the 
continental US, is reminiscent of the pattern of 
200 hPa height anomalies obtained by 
Schubert et al., (2004) in their 9-member 
ensemble of numerical simulations designed to 
investigate the role of sea surface temperature 
anomalies in forcing the atmospheric 
circulation anomalies during the 1930s Dust 
Bowl. That the ensemble members with strong 
SAT trends over the US exhibit stronger 500 
hPa height rises than the members with small 
SAT trends, despite the absence of a clearly 
discernible SLP signature suggests that the 
trends in SAT extend through the depth of 
lower troposphere, inducing a hydrostatic 
response in the 1000/500 hPa thickness field. 
Similar patterns of SLP and 500 hPa height 

Fig. 16. Left panels: Patterns of SLP (upper) and 500 hPa height (lower) anomalies during the US Great Plains Dust 
Bowl summers, the average of JJA 1934, 1935, 1936. The reference period for the anomalies is 1900-2010. Right 
panels: the corresponding fields regressed on the time series of JJA SAT averaged over the continental US. The 
regression coefficients are based on the period of record 1900-2010, exclusive of JJA 1934, 1935, and 1936. Contour 
interval 0.5 hPa for SLP (equivalent to ~4m of geopotential height) in the top panels and 4m for 500 hPa height in the 
lower panels. Based on the detrended 20th Century Reanalysis (Compo et al., 2011). 
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have been observed during anomalously hot 
summers over the contiguous US and during 
the hottest summers of the 1930s, as shown in 
Fig. 16, but the upstream anticyclone over the 
North Pacific and the low geopotential heights 
along the Arctic coast are not as prominent in 
the historical data as they are in the 
simulations. 

As noted above, the anomalously strong 
positive upper level geopotential height trends 
over the contiguous US in Figs. 15c,d are, at 
least in part, a hydrostatic reflection of the 
anomalous strength of the lower tropospheric 
warming induced by the surface heat balance. 
Ensemble members with strong summertime 
warming trends over the continental US tend 
to be marked by negative precipitation 

tendencies: the correlation coefficient between 
JJA SAT trends and precipitation trends 
averaged over the continental US among the 
40 individual ensemble members is –0.82. A 
drying tendency favors a tendency toward 
reduced latent heat fluxes and enhanced 
sensible heat fluxes at the Earth’s surface, 
which favors warming. Such land surface 
feedbacks can serve to amplify and prolong 
dynamically-induced heat waves (e.g., see 
Black et al., 2004, Dole et al., (2011). It 
follows that during summer the internally 
generated dynamically- and 
thermodynamically-induced diversity in the 
temperature trends (the boxes in the lower row 
of Fig. 1) may not be clearly separable, even 
in large ensembles of simulations.  

Fig. 17. The leading EOFs of extratropical SLP trends from the 40-member CCSM3 ensemble (left panels) and in the 
CAM3 ensemble (right panels) in (top) DJF and (bottom) JJA. Trends are computed over the period 2005–2060 for 
CCSM3 and for 56-year non-overlapping segments for CAM3. EOF analysis is performed for each hemisphere 
separately but plotted on a single map. The percent variance explained by each EOF is given in the upper right corner 
of each panel, with the first number denoting the NH and the second number the SH (for example, for CCSM3 in DJF, 
NH EOF1 accounts for 36% of the NH variance and SH EOF1 accounts for 60% of the SH variance). From Deser et al. 
(2012a). 
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4.1.    Further insights derived from 
projections of future SAT 
trends 

The 40 member ensemble of CCSM3 
simulations in Deser et al. (2012a) has been 
subjected to a more formal analysis of the 
dynamical contribution to the diversity of the 
wintertime SAT trends. The left hand columns 
of Fig. 17 show the leading Northern and 
Southern Hemisphere empirical orthogonal 
functions (EOFs) of the extratropical DJF and 
JJA 2005-2060 SLP trends. Both DJF patterns 
and the Northern Hemisphere JJA pattern 
closely resemble the leading EOFs of the 
month-to-month variability in historical time 
series (Thompson and Wallace, 2000; not 
shown), which are commonly referred to as 
the “Northern and Southern Hemisphere 
annular modes (NAM and SAM, 
respectively)” and we will refer to them by 
those names. They correspond to preferred 
modes of variability in the historical record 
and in extended control runs of the CCSM3 
and other climate models (Miller et al., 2006). 

The CCSM is a coupled model in which 
ENSO and longer term climate variations 
resulting from large scale atmosphere-ocean 
interactions come into play. In order to 
distinguish between the internally generated 
variability that is attributable to changes in the 
atmospheric circulation alone and variability 

that is a consequence of atmosphere-ocean 
interactions, the SAT trends in the 40-member 
ensemble of CCSM3 runs are compared with 
trends in non-overlapping 56 year segments of 
a 10,000 year control integration of the 
Community Atmospheric Model (CAM3), the 
same atmospheric model that is used in the 
coupled CCSM3 integrations. In the control 
integration greenhouse gas and aerosol 
concentrations are held constant and SST is 
prescribed in accordance with the seasonally 
varying climatology but the treatment of land 
surface feedbacks is the same as in CCSM3. 
Results are shown in the right hand panels of 
Fig. 17. If the atmosphere-ocean coupled 
variability were making an important 
contribution to the diversity of the trends 
among the CCSM3 ensemble members, one 
would expect the amplitude of the annular 
modes and other preferred patterns of 
variability in the SLP field to be larger in the 
CCSM3 ensemble members than in the 56-
year segments of the CAM simulations. That 
the EOFs obtained from the CCSM3 and 
CAM3 runs are similar in shape, comparable 
in amplitude, and explain comparable 
fractions of the total SLP variance suggests 
that the diversity of the SLP trends in the 
CCSM3 ensemble members is mainly due to 
the internal variability of the atmospheric 
circulation in the absence of any coupling to 
the ocean.  
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In EOF analysis each ensemble member is 
assigned a set of scores, which in this case are 
measures of the polarity and the strength with 
which the respective EOFs are expressed in 
the SLP trend. The ensemble mean of the 
scores for the 56 year segments of the CAM3 
control run is zero. However, the projections 
of the patterns of SLP trends in the 40 CCSM3 
simulations onto EOF1 of the control run 
exhibit a statistically significant positive bias, 
as shown in Fig. 18, indicative of falling SLP 
in both polar cap regions and rising SLP over 
much of middle latitudes. SLP changes in this 
sense are commonly referred to as a trend 
toward the “high index polarity” of the NAM 

and the SAM. Nearly all the climate models 
used in the IPCC projections exhibit a trend in 
this sense (Meehl et al., 2007). This shift 
toward the high index polarity of the annular 
modes is evidently a robust feature of the 
ensemble-mean response to the buildup of 
greenhouse gases in the CCSM3 (i.e., the 
upper right box in Fig. 1), but it does not occur 
in all of the individual ensemble members. 
The diversity of the SLP trends in the 
individual members of the ensemble, as 
reflected in the width of the frequency 
distributions in Fig. 18, is a measure of the 
structural uncertainty inherent in the projected 
SLP trends for 2005-2060. 

Fig. 18. Histograms of the SLP 2005–2060 trend projections onto EOF1 from the CAM3 control integration for the 
(top) NH and (bottom) SH in (left) DJF and (right) JJA. The red open bars show results from the 40-member CCSM3 
and the gray filled bars from the 178-member Community Atmospheric Model (CAM3), which is used as a control. 
The x axis is in units of standard deviations of the CAM3 control integration, and the y axis is frequency (number of 
ensemble members divided by the total number of ensemble members). From Deser et al. (2012a). 
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The low level circulation pattern implied 
by EOF1 of the SLP trend induces a spatially 
varying SAT trend of the form shown in Fig. 
19, which is obtained by averaging the SAT 
trends over all ensemble members, weighting 
each in accordance with its “score” for EOF1 
of the SLP trend (i.e., by regressing the SAT 
trends at each SLP grid point upon the scores). 
The patterns of induced SAT trend in the two 
hemispheres are dynamically consistent with 
EOF1 of the SLP trend and they resemble the 
SAT patterns obtained by regressing the SAT 
field upon time varying (SLP) indices of the 
annular modes (Thompson and Wallace 2000). 
The regression patterns in Fig. 19, in effect, 
define the anomaly in the trend of SAT in each 
member of the ensemble (i.e., the departure 
from the ensemble-mean SAT trend) that can 

be attributed to the anomalous trend in the 
NAM/SAM in each ensemble member (again, 
anomalous with reference to the ensemble 
mean trend). Subtracting out that portion of 
the SAT trend at each grid point in each 
ensemble member that is attributable to the 
anomalous trend in the NAM/SAM in that 
ensemble member constitutes a dynamical 
adjustment that serves to reduce the diversity 
of the trends among the ensemble members. A 
dynamically adjusted global or hemispheric 
SAT trend field can be created by subtracting 
the dynamical contribution from the raw SAT 
trend field for each member. In principle, a 
complete dynamical adjustment of the SAT 
trends in the individual members of the 
ensemble can be obtained by the applying 
dynamical adjustments not only for the 

Fig. 19. Surface temperature regressed upon the scores of EOF1 of extratropical SLP trends from the 40-member 
CCSM3 ensemble in DJF, shown in Fig. 16. Contours show the SLP trend EOF (contour interval 0.6 hPa per 56 years; 
negative values are dashed). Trends are computed over the period 2005–2060. EOF and regression analyses are 
performed for each hemisphere separately but plotted on a single map. From Deser et al. (2012a). 
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NAM/SAM, but for all the significant EOFs of 
the SLP trends. In practice, applying this 
procedure to an ensemble with a finite number 
of members will inevitably tend to 
overestimate the dynamical contribution, i.e., 
to attribute too much of or “overfit” the 
diversity of the SAT trends in the individual 
ensemble members to the diversity of the SLP 
trends. 

4.2.    Estimating the dynamical 
adjustment for individual 
ensemble members 

In order to avoid serious overfitting of the 
diversity (or variance) of the trends in the 
individual ensemble members it is necessary 
to apply analysis techniques that are 
parsimonious i.e., that involve regression 
equations very few SLP predictors. Deciding 
how best to perform the analysis is an area of 
active research. Here we will briefly describe 
some linear analysis tools that might be used 
in performing such an analysis and the choices 
that need to be made when applying them. 

Consider the set of SAT trends T(n), (n = 
1, N) at a specified grid point, one belonging 
to each of the N ensemble members. A simple, 
conservative approach is to apply least squares 
regression (LSR), using the SLP trend field in 
a prescribed spatial domain to define a single 
“predictor” T*(n) of T(n). The first step is to 
regress the standardized SLP trend field upon 
T(n) to obtain a single predictor pattern P(x). 
Here the standardization is performed in 
“ensemble-space”; i.e., the standard deviation 
of SLP trend at each grid point is based on the 
sample consisting of the N ensemble members. 
The second step is to project the standardized 
SLP trend field in each ensemble member 
upon the P(x) to obtain a score S(n) that 

provides a relative measure of the polarity and 
the strength with which the predictor pattern 
P(x) is expressed in that ensemble member. 
The final step is to scale the scores S(n) by 
fitting them to T(n) using the method of least 
squares. The rescaled scores are the predictors 
T*(n), which constitute the dynamical 
adjustment. Spatial averaging and the steps in 
LSR are commutative, so this procedure can 
equally well be applied directly to an 
ensemble of spatially averaged SAT trends. 

For each specified grid point or area 
average time series, LSR yields a single 
correlation coefficient or “predictor” T*(n) of 
the SAT trend in the nth ensemble member 
and is thus as parsimonious as any method can 
be. The LSR approach can be extended to 
multiple predictors by the method of partial 
least squares regression (PLSR). In PLSR, the 
first predictor T1*(n) obtained by LSR, as 
described above, is regressed out of both the 
SLP trend field in each of the individual 
ensemble members and the ensemble of grid 
point or area-average SAT trends T(n). Then 
LSR is applied to these residuals to obtain a 
second predictor T2(n) that is orthogonal to 
T1(n) by construction. The procedure can be 
repeated as many times as desired. PLSR is 
widely used in other fields such as 
econometrics, chemometrics, neuroscience, 
and computer science, and is beginning to be 
more widely used in geophysics (Smoliak et 
al. 2010). It has been used by Wallace et al. 
(2012) to estimate the dynamical contribution 
to the wintertime SAT trends over the 
Northern Hemisphere continents, as discussed 
in the next subsection. 

The above procedure can be 
computationally intensive when it is applied 
pointwise (i.e., to every grid point in the SAT 
field) because of the high degree of 
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redundancy inherent in the calculations, 
especially when the grid is fine. Under some 
circumstances it may be preferable to expand 
the SAT trend field in terms of EOFs and to 
perform LSR or PLSR on a subset of the 
resulting PCs. The same considerations that 
apply to pointwise or area-wise LSR/PLSR are 

also applicable when these forms of analysis 
are performed in PC space.  

Figure 20 shows raw and dynamically 
adjusted wintertime SAT trends for Members 
4 and 22 of the 40 member ensemble 
conducted with CCSM3, the ensemble 
members with the smallest and largest SAT 

Fig. 20. Examples of raw and dynamically adjusted 2005-2060 SAT trends for ensemble members 4 and 22 of the 40- 
member CCSM3 ensemble, the members that exhibited the smallest and largest SAT trends averaged over the 
contiguous US. The top row of panels show the raw patterns, the second shows the adjusted patterns with one pass of 
PLSR, the third row with two passes, and the bottom row after three passes. 
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trends over the contiguous US. In this example 
the dynamical adjustment was computed by 
performing pointwise PLSR on the SAT field 
over North America. The patterns P(x) in the 
SLP field are for the domain 10° to 90°N and 
from the Date Line to the Greenwich 
Meridian. The dynamical adjustment has the 
strongest influence on ensemble members 
such as these, which exhibit highly anomalous 

SAT trends with respect to the ensemble 
mean. Figure 21 shows dynamically adjusted 
trends for the individual members of the 
CCSM 4 and ECHAM ensembles, whose raw 
trends were shown in Fig. 9. It is evident that 
the application of the dynamical adjustment 
substantially reduces the diversity of the SAT 
trend patterns in the ensemble members, 
bringing them more into line with the 

Fig. 21. As in Fig. 9 but dynamically adjusted with two passes of PLSR using the SLP field in the domain 10° to 90°N 
and from the Date Line to the Greenwich Meridian as the predictor field. 
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ensemble-mean trends. Averaged over the 
North American domain, applying this 
dynamical adjustment with two passes 
accounts for 75% of the variance of the SST 
trends in the 30-member CCSM4 ensemble. 
That it leaves 25% of the variance unexplained 
suggests that our dynamical adjustment 
scheme, which relies exclusively on the SLP 
field, might not be capturing all the 

dynamically-induced variance. 
When applied to regions the size of the 

contiguous US, the dynamical adjustment 
based on SLP appears to be even more 
effective in reducing the diversity of the SAT 
trends in summer than in winter, accounting 
for 81% of the variance of the SST trends in 
the 30-member CCSM4 ensemble with only 
two passes. Fig. 22 is the counterpart of Fig. 

Fig. 22. As in Fig. 20 but for Ensemble Members 3 (left) and 31 (right), the members that exhibited the smallest and 
largest JJA SAT trends averaged over the contiguous US. 
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20 for the ensemble members that exhibited 
the smallest and largest summertime SAT 
trends over the contiguous US. The contrasts 
between the two SAT patterns are greatly 
reduced by the application of just a few passes 
of PLS, using the SLP field as a predictor. 
Why the SLP-based dynamical adjustment is 
so effective in accounting for the member-to-
member diversity of the summertime trends in 
the CCSM4 remains to be determined.  

4.3.    Dynamically adjusting SAT 
trends in the historical record 

The methods described in the previous 
subsection can be adapted to estimating the 
dynamical contribution to the observed SAT 
trends by using temporal variability within the 
historical record as a surrogate for the 
diversity of the individual ensemble members. 
In this case the goal is to explain the 
multidecadal variability of the trends observed 
within a single time series using SLP patterns 
derived from the analysis of that same time 
series. In this respect, the strong late 20th 
Century warming trend during the boreal cold 
season over the continental interiors, as 

documented in Section 3.2, is arguably the 
most dramatic feature in the historical record. 
Was it dynamically induced? If so, is the 
adjustment large enough to affect estimates of 
the rise in GST during this period? 

As background for addressing this 
question, Fig. 23 shows the global pattern of 
November-April SLP trends from 1965 to 
2000. Compared to other sampling intervals of 
comparable length, the trends during this 
interval are particularly strong and spatially 
coherent, with pressure falls in both polar 
regions and pressure rises in midlatitudes, 
indicative of a shift toward the high index 
polarity of the NAM and the SAM. The trend 
in the PNA pattern was associated with a 
spontaneous, abrupt shift toward a more El 

Fig. 23. Observed 1965–2000 SLP trends for the boreal 
cold season (Nov.–Apr.), based on the 20th Century 
Reanalyses. The contour interval is 1 hPa per 36 years. 
Negative values are dashed. Zero contour bold. From 
Wallace et al., (2012). 
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Fig. 24. 1965–2000 SAT trends for the boreal cold season 
(Nov.–Apr.): (a) the raw trend pattern, (b) the dynamical 
contribution, estimated by partial least squares regression 
(PLSR) with two predictors for each grid point, and (c) 
the dynamically adjusted trend pattern, calculated by 
subtracting the dynamical contribution in (b) from the raw 
trend pattern in (a) calculated by subtracting the 
dynamical contribution in the middle panel from the trend 
pattern in the top panel. SAT from the NCDC MLOST 
dataset and SLP from the 20th Century Reanalyses. 
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Niño-like state of the sea surface temperature 
distribution and related atmospheric 
circulation patterns equatorial Pacific in 1976-
77 (Nitta and Yamada, 1989; Trenberth and 
Hurrell,1994; Zhang et al. 1997). 

Shindell et al. (2001) investigated the 
cause of the strong NAM-related trends during 
this interval and they concluded, on the basis 
of numerical simulations with an array of 
external forcings, that the observed trend in 
the NAM during this interval was beyond the 
range of internal variability and was likely 
forced by a change in the meridional heating 
gradient in the stratosphere induced by the 
buildup of greenhouse gases. This explanation 
would account for the prominence of the 
NAM signature in the 1965-2000 SLP trend, 
but does not explain the reversal in the trend in 
the NAM that began in the mid- 1990s and 
became more clearly apparent after the turn of 
the millennium. Subsequent numerical 
experiments by Bracco et al. (2004) and Deser 
and Phillips (2009) based on ensembles of 
integrations with two atmospheric GCMs 
forced with the observed evolution of SSTs, 
greenhouse gases, ozone and aerosols suggest 
that the prominent NAM signature in Fig. 22 
is likely a manifestation of atmospheric 
internal variability that happened to be 
particularly strong during this 36-year interval. 

In a similar manner, Trenberth and Hoar 
(1996, 1997) investigated the cause of the late 
20th Century trend toward the positive 
polarity of the PNA pattern; i.e., the 
prevalence of an El Niño-like state of the 
tropical Pacific after the mid-1970s. On the 
basis of a statistical analysis of the historical 
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Fig. 25. SAT trend patterns for the reference interval 
1920–2010: (a) dynamically adjusted trend for the boreal 
cold season estimated by PLSR as in Fig. 24, (b) raw 
trend for the warm season, and (c) annual mean trend 
estimated by averaging the dynamically adjusted cold 
season trend and the raw warm season trend. 

Table 1.  Observed 1965-2000 SAT trends over land for boreal cold and warm seasons November-April and May-
October expressed in °C per 36 years. The italicized numbers refer to dynamically adjusted trends as explained in 
Section 4.  GSAT refers to global-mean SAT, GSST to global-mean SST and GST refers to global mean surface 
temperature including both land and sea. Data based on the National Climatic Data Center historical merged land-
ocean land surface temperature analysis (MLOST), with its land component, GHCNv3, and ocean component, 
ERSSTv3b. Adapted from Wallace et al. (2012). 

 Cold Warm Annual Mean 
N: 40°N–90°N 1.72 (1.02) 0.79 1.26 (0.91) 
S: 60°S–40°N 0.70 0.69 0.70 
GSAT (Land) 1.03 (0.80) 0.72 0.88 (0.76) 
GSST (Ocean) 0.35 0.37 0.36 
GST 0.57 (0.49) 0.48 0.52 (0.49) 
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record of the Southern Oscillation Index (SOI) 
they concluded in their second paper that the 
behavior of the SOI during the post 1976 
period had been “highly unusual and very 
unlikely to have been caused by natural 
variability”. With the benefit of 15-years of 
hindsight it is evident that the role of natural 
(i.e., unforced) variability of the climate 
system was underestimated in this case as 
well: the prevalence of the El Niño-like state 
of the equatorial Pacific has not persisted into 
the 21st Century.  

In contrast to the trends in the NAM and 

the PNA pattern, the late 20th Century trend in 
the SAM is widely regarded as having been at 
least partially forced by a decrease in 
concentrations of stratospheric ozone due to 
the buildup of CFCs during this period— the 
so-called “Antarctic ozone hole” (Thompson 
and Solomon, 2002; Gillett and Thompson 
2003, Polvani et al., 2013) Whether more 
subtle ozone losses over the Arctic during this 
period might have induced an analogous trend 
in forcing the NAM is less clear (Hartmann et 
al., 2000). The NAM- and PNA/ENSO-related 
SLP trends have obviously contributed to the 

1900  1920  1940  1960  1980  2000  
Year

a) Northern Hemisphere

b) N (40°N–90°N)

 c) Contiguous United States
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Adjusted

Raw

Adjusted

Raw

Adjusted

Fig. 26. Time series of (red) warm season and (blue) cold season SAT spatially averaged as indicated. The top pair of 
curves in each set shows raw time series and the bottom pair shows the dynamically adjusted cold season series and 
raw warm season series. Adapted from Wallace et al., (2012). 
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wintertime warming of Eurasia and North 
America poleward of 40°N from 1965 to 
2000. Results obtained by pointwise 
dynamically adjusting time series of SAT 
poleward of the equator using two SLP-based 
PLSR predictors per grid point are shown in 
Fig. 24. The dynamical contribution to the 
SAT trend resembles the SAT signature of the 
NAM. The residual SAT trend is weaker than 
the raw trend and more closely resembles the 
corresponding warm season trend shown in 
Fig. 11c. Yet it is clear that the dynamical 
adjustment shown in Fig. 24 does not account 
for all of the enhanced warming over the 
interiors of the continents during the boreal 
cold season relative to the model simulations 
shown in Fig. 11b. Either the methodology 
described in the previous subsection is failing 
to capture all the dynamically-induced 
variability or there is a contribution from the 
thermodynamically-induced internal 
variability discussed in the next subsection 
and in Chapter XX. 

To place the dynamical adjustment for 
1965-2000 in a global context, Table 1 shows 
a summary of how it affects the trends in 
global mean SAT over land (GSAT) and over 
the entire globe (GST). Applying the 
dynamical adjustment reduces the warming 
over the high latitude Northern Hemisphere 
land masses during the boreal cold season 
from 1.72°C to 1.02°C over this 36-year 
interval, eliminating most of the excess 
warming relative to the warm season and 
relative to the land lying south of 40°N. The 
magnitude of the adjustment (0.70°C) is 
diluted by averaging over all land (to 0.28°C) 
and over the year (to 0.14°C) and by 
combining land and ocean data (to 0.04°C in 
GST), so it accounted for less than 10% of the 
global warming signal during this interval. 

Compared to the accelerated warming; i.e., the 
rate of rise of annual mean GST during this 
interval minus the mean rate of rise of GST 
during the past century of 0.08°C per decade 
or 0.29°C per 36 years, it amounts to about 
15%. Hence, though appreciable and of first 
order importance for the attribution of high 
latitude Northern Hemisphere wintertime 
temperature trends over land, the dynamical 
contribution leaves most of the accelerated 
rate of global warming during the late 20th 
Century unexplained and even after it is 
removed, land (GSAT) warmed twice as 
rapidly as ocean (GSST) during this period. 

The importance of the dynamical 
adjustment tends to decline with the length of 
the interval over which the trends are 
computed, but even for the longer interval 
1920-2010, it remains quite important during 
the boreal cold season, as seen in Fig. 25. 
Applying the dynamical adjustment to the cold 
season trends and averaging them with the 
warm season trends is seen to yield a 
relatively simple spatial pattern suggestive of 
enhanced warming over the deserts and 
reduced warming over China and the 
southeastern United States possibly in 
response to the buildup of aerosols. 
Application of the dynamical adjustment to 
the cold season trends substantially improves 
the coherence between cold and warm season 
SAT time series both for the global mean and 
for regional means, as illustrated in Fig. 26. In 
particular, it accounts for most of the excess 
warming during the boreal cold season relative 
to the warm season over the course of the 20th 
Century. The positive correlation between the 
warm and cold season time series is indicative 
of a season-to-season memory that transcends 
the very short thermal adjustment time of the 
land surface. 
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5.  Does thermodynamic-induced 
variability play a role? 

Of the four categories of processes listed 
in Fig. 1 that contribute to climate trends, 
thermodynamically-induced internal 
variability is the most difficult to quantify 
because it requires an understanding of 
variations in the oceanic meridional 
overturning circulation (MOC) and the land 
biosphere and hydrosphere, and cryosphere, 
all of which are on the frontiers of climate 
science. It is not clear how well the models 
used in IPCC assessments, including the ones 
referred to in this chapter, simulate the 
relevant processes on the multidecadal time 
scale. For example, it is quite possible that the 
diversity of the trends in Fig. 9, large though it 
is, could be underestimated for failure of the 
models to realistically represent the variability 
of the MOC for lack of adequate treatment of 
the physics or proper initialization. In a similar 
manner, changes in vegetation and ground 
hydrology that are ignored or not accurately 
represented in the models could conceivably 
render the summertime trends more diverse 
than the examples included in this chapter.  

Multidecadal variations in the strength of 
the MOC affect the poleward heat transport by 
the Gulf Stream and they regulate the rate of 
exchange of heat between the oceanic mixed 
layer and the layers below. The temperature of 
the oceanic mixed layer responds rapidly to 
changes in the surface energy balance, through 
which the global warming signal is transmitted 
together with regional signals associated with 
atmospheric circulation anomalies. When the 
MOC is increasing in strength, as it was 
during the 1980s and 1990s, enhanced 
poleward heat transports warm the surface 
waters of the subpolar North Atlantic and parts 
of the Arctic, which in turn, transfer heat to 

the atmospheric boundary layer, where it is 
advected downstream by the winds. The MOC 
strength also modulates the rate at which heat 
that accumulates in the ocean mixed later is 
transferred into the deeper ocean (Meehl et al. 
2013). Hence, variations in the strength of the 
MOC may be viewed as a time-varying 
thermodynamic forcing of SAT that is likely 
to be strongest over the higher latitudes during 
the boreal cold season, when the sea to air 
fluxes of sensible and latent heat are strongest. 
Numerical experiments by Semenov et al. 
(2010) suggest that these modulations in the 
fluxes may have been strong enough to force 
significant SAT anomalies over the high 
latitude continents, irrespective of any related 
circulation changes. If so, the resulting 
thermodynamic contribution to the high 
latitude warming would appear in the residual 
SAT trend field in Fig. 24c. 

A prominent feature of the multidecadal 
variability in the strength of the MOC is the 
so-called Atlantic Multidecadal Oscillation 
(AMO) which exhibits a period on the order of 
70 years, as discussed in Chapter XX. There 
and in Chapter XX it is argued that the AMO 
is a manifestation of internal variability of the 
coupled atmosphere-ocean climate system that 
would exist even in the absence of external 
forcing. It has further been argued that AMO-
related variations in the strength of the MOC 
during the 20th century are responsible for 
much of the multidecadal variability in the rate 
of rise of GST; i.e., the relatively rapid rise in 
the 1920s and 30s, the mid-century hiatus, the 
resumption of the rapid warming toward the 
end of the century and perhaps even the recent 
second hiatus (DelSole et al., 2011, Wu et al., 
2011). For further discussion, the reader is 
referred to Chapter XX by K. K. Tung). 
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Despite the array of statistical and 
modeling evidence that has been presented in 
support of the role of MOC-related variations 
in thermodynamic forcing, many climate 
scientists remain convinced that the 
irregularities in the rate of warming in the 
historical record are attributable to variations 
in the time-varying anthropogenic forcing by 
aerosols. For example, on the basis of 
numerical experiments with a state-of-the-art 
climate system model, Booth et al., (2012) 
conclude that aerosol emissions and periods of 
volcanic activity explain 76 percent of the 
simulated multidecadal variance in detrended 
1860–2005 North Atlantic sea surface 
temperatures and that after 1950, their 
simulated variability is within observational 
estimates. Numerical experiments reported in 
the attribution chapter of the IPCC’s Fourth 
Assessment Report (Hegerl et al., 2007) and 
highlighted in the Technical Summary also 
portray the late 20th Century warming in GST 
as being entirely in response to anthropogenic 
forcing. For further discussion of these issues 
see Zhang et al. (2013) and Chapters XX, XX, 
XX, and XX of this book.  

Another arena in which 
thermodynamically forced internal variability 
of the climate system might come into play is 
through the feedbacks associated with the 
fluxes of latent and sensible heat by soil 
moisture and vegetation during the warm 
season (or in the tropics, during the growing 
season). Although land surface processes act 
on rather short time scales, the existence of 
positive feedbacks can serve to amplify the 
variability on all time scales. Another aspect 
of this problem on a regional scale is the 
existence of human-induced external forcings 
not directly related to global warming; e.g., 

cultivation, irrigation, deforestation and 
afforestation, and inadvertent desertification. 

6.  Implications for the attribution 
of extreme events 

The structural uncertainty inherent in the 
attribution of regional temperature trends has 
important implications for the attribution of 
extreme events. To first order, the increase the 
frequency of occurrence of extreme high 
temperatures (e.g., a daily maximum 
temperature two standard deviations higher 
than the current climatological mean) can be 
modeled as a shift in the probability density 
function (PDF) of temperature toward higher 
values without any change in the shape of the 
distribution (Wergen and Krug, 2010; Lau and 
Nath, 2012, Coumou et al., 2013). For 
example, if temperature were normally 
distributed, a shift in the PDF of one standard 
deviation would raise the frequency of 
occurrence of temperatures more than two 
standard deviations above the current normal 
from 2.5% to 18% and a shift of two standard 
deviations would render today’s extreme event 
a near normal temperature. 

The effect of global warming upon the 
incidence of SAT-related extreme events is 
thus seen to be directly related to the 
cumulative rise of standardized temperature. 
Polar amplification notwithstanding, it is clear 
from studies of Mahlstein et al. (2011, 2012) 
and from Fig. 2 that the standardized 
temperature trend attributable to human 
activities in the tropics is substantially larger 
than in the extratropics. It follows that the 
statistics of extreme events have been more 
profoundly influenced by human-induced 
global warming in the tropics than at higher 
latitudes. While it is true that the temperature 
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anomalies associated with extreme events tend 
to be smaller in the tropics than at higher 
latitudes, tropical ecosystems tend to be more 
temperature sensitive because they are adapted 
to living within a small temperature range 
(Deutsch et al., 2008; Dillon et al., 2010; 
Beaumont et al., 2011) and the same is true, to 
some degree, of human societies, particularly 
with respect to agriculture (Cline, 2007; 
Lobell et al., 2011a,b) and civil infrastructure 
(Colombo et al., 1999; Lazo et al., 2011). 

The presence of multidecadal variability 
in SAT with regional trends that may be as 
large as the trend in global mean temperature 
raises the question of how to estimate the 
temperature rise attributable to human 
activities at the location at which the extreme 
event takes place: should it be based on 
global-mean temperature, as in the adage, “a 
rising tide lifts all ships” or should it be based 
on the local temperature trend? If the spatial 
inhomogeneities in the cumulative rate of 
warming on the multidecadal time scale were 
known to be induced by inhomogeneities in 
the forcing (e.g., if the temperature rise at a 
specific location were less than in surrounding 
regions due to a local buildup of aerosols or an 
increase in irrigation), that would argue in 
favor of using the local temperature trend. But 
if the spatial inhomogeneity were mainly due 
to internally generated sampling variability, 
then it could be argued that the local 
temperature trend should not be used for 
estimating the anthropogenic contribution to a 
particular extreme event or to a change in the 
frequency of occurrence of extreme events. 
A case in point is the attribution of the 2010 
Russian heat wave, which occurred in a region 
in which the rise in summer temperatures was 
anomalously small relative to the hemispheric 
mean (Dole et al., 2011). If the smallness if 

the trend were demonstrably due to the 
buildup of aerosols or other anthropogenic 
forcing in that specific region, then it could be 
concluded with confidence that the greenhouse 
warming did not play an important role in 
setting the stage for this event; i.e., that it was 
offset by other regional forcings. But if the 
smallness of the summer temperature trends 
over this region were a reflection of internally 
generated sampling variability, then it could 
be argued that the globally averaged, rather 
than the local rate of warming should be used 
as a reference, in which case the role of 
human-induced climate change would emerge 
as more prominent. To make this 
determination would require an ability to 
assess the contribution of internally generated, 
interdecadal climate variability to the observed 
rate of warming on a regional basis.  

7.  Summary and Discussion 

In this chapter we have categorized SAT 
trends as being externally forced versus 
internally generated (i.e., forced versus free) 
and as being dynamically versus 
thermodynamically induced, as elaborated in 
Fig. 1. The distinction between forced and free 
is illuminated by analysis of numerical 
simulations in which a single model is run 
with a single set of time dependent external 
forcings but starting from a suite of different 
atmospheric initial conditions, yielding an 
ensemble of time-dependent climate scenarios. 
The dynamically induced component of the 
SAT trend is isolated by linear regression 
using the SLP field as a ‘predictor’ and the 
individual ensemble members as samples. 
When ensembles of climate scenarios are not 
available, the regression can be performed in 
the time domain. In principle, this 

33 
Typesetting a book for W

SPC
 using M

S W
ord 

 



Wallace, Deser, Smoliak, and Phillips 
 

34 

methodology can be applied to variables other 
than SAT and variables other than SLP can be 
used as ‘predictors’ of the dynamically-
induced trends. 

The relative importance of the forced and 
free components of the trends depends upon 
the interval 𝝉 over which the trends are 
computed. If the forced component can be 
viewed as increasing linearly with 𝝉 and the 
dynamically-induced variability can be 
modeled as white noise whose contribution to 
the variance of the trend is inversely 
proportional to 𝝉, then the prominence of the 
forced component (i.e., the ratio of the trend to 
the standard deviation of the variability about 
the trend) should vary as 𝝉3/2. The “signal” in 
the SAT trends is also latitude dependent (i.e., 
much more prominent in the tropics than in 
the extratropics) and dependent upon the 
spatial averaging. Here we have focused 
mainly on SAT trends over the continental US 
within 36 and 56 year intervals. The individual 
ensemble members in large ensembles of 
simulations are shown to exhibit a remarkable 
amount of diversity, most of which is 
dynamically induced. That this dynamical 
contribution to the variability is as large in an 
atmospheric model run with SST prescribed in 
accordance with its seasonally varying 
climatology as in the coupled runs suggests 
that the dynamically induced component of 
the trends is mainly attributable to 
atmosphere’s own internal variability rather 
than to coupled atmosphere-ocean 
interactions. 

Whether the real climate system exhibits 
as much dynamically-induced variability as 
the climate models examined in this study 
remains to be determined. There are 
indications that the temporal variance of the 
atmospheric circulation in the CAM3 is 

somewhat overestimated (Deser et al. 2012a) 
and this may also be true of CCSM4. If this is 
the case, one might expect the dynamically-
induced variability to be overestimated as 
well. On the other hand, it is possible that the 
coupled atmosphere-ocean system exhibits 
multidecadal variability that is not fully 
captured by the models (Deser et al., 2012c; 
Danabasoglu et al., 2012), in which case, the 
uncertainty inherent in projections of 56-year 
SAT trends might be underestimated. 

Dynamically-induced atmospheric 
variability accounts for ~0.7 of the 1.7°C the 
warming of the Northern Hemisphere 
continents from 1965 to 2000, but this has had 
only a small effect on the globally averaged 
warming. A potentially more important 
contributor to multidecadal variations in the 
rate of rise of GST is the variability in the 
strength of the MOC, which modulates the 
fluxes of sensible and latent heat at the air-sea 
interface over the subpolar North Atlantic and 
parts of the Arctic. Just how much of the 
spatial and temporal variability in the rate of 
warming over the continents is MOC-related 
how much of it is induced by spatial and 
temporal inhomogeneities in the forcing by 
greenhouse gases and aerosols has important 
implications for estimates of climate 
sensitivity. If much of the late 20th century 
warming proves to be MOC-related rather 
than anthropogenically forced, then the 
estimates of the climate sensitivity inferred 
from the historical simulations in the IPCC’s 
Fourth Assessment Report will need to be 
adjusted correspondingly downward. 

We have shown that sampling variability 
constitutes a large part of the uncertainty 
inherent in projections of regional climate 
change over the next 50 years, even in 
averages over areas as large as the continental 
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US. The uncertainty in estimates of the forced 
response can be narrowed by performing 
ensembles of simulations and/or by applying 
dynamical adjustments to the individual 
ensemble members. However, even if the 
forced variability were known exactly, the 
inherently unpredictable, internally generated 
sampling variability in the future trajectory of 
the climate system would still remain because 
it is only one member of an ensemble of 
possible time-dependent scenarios that could 
result from a single prescribed external 
forcing. During the summer season the 
internally generated SLP variability is smaller 
than during winter but the thermodynamic 
consequences of changing atmospheric 
circulation patterns could be amplified by 
hydrologic and terrestrial biosphere feedbacks. 
Deterministic, multidecadal, MOC-related 
variability is an additional source of 
uncertainty that could modulate or even 
temporarily reverse the sign of short term GST 
trends, as discussed in Chapter XX. 
Opponents of environmental protection exploit 
the uncertainties inherent in projections of 
future climate change to cast doubt on the 
immediacy, seriousness, and policy relevance 
of human-induced environmental degradation 
and to portray the scientific community as 
“crying wolf.” The sampling issues discussed 
in this chapter afford the so-called “climate 
skeptics” some degree of aid and comfort, but 
not nearly as much as they derive from 
misstatements about attribution of extreme 
events and erroneous projections of regional, 
near term climate change. Until the signal of 
human-induced climate change emerges more 
clearly above background variability, a more 
compelling case for environmental protection, 
including reductions the emissions of 
greenhouse gases, can be made by focusing on 

the indisputable evidence of human-induced 
warming in the tropics (Mahlstein, 2011) and 
the combined threats of climate change, 
looming shortages of fresh water (Pearce, 
2007; Brown, 2010) and loss of topsoil 
(Montgomery, 2009) to food security. 
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