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How to construct computational models

Set of geophysical fluid equations:
@ Define mathematical descriptors for: (i) particle movements
(i) force fields
® Solve balance of mass, momentum and energy = fluid equations
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How to construct computational models

Set of geophysical fluid equations:
@ Define mathematical descriptors for: (i) particle movements
(i) force fields
® Solve balance of mass, momentum and energy = fluid equations

Descriptors mostly used in geophysical fluid dynamics (GFD):
o Particle movements «+» Vectors ‘Z
e Forces < Vectors F

= the fluid’s velocity is described
by the vector-valued equation of
the form:

ov .
E"F...O(F
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How to construct computational models

Set of geophysical fluid equations:
@ Define mathematical descriptors for: (i) particle movements
(i) force fields
® Solve balance of mass, momentum and energy = fluid equations

Descriptors mostly used in geophysical fluid dynamics (GFD):
o Particle movements «+» Vectors ‘Z
e Forces < Vectors F

= the fluid’s velocity is described
by the vector-valued equation of
the form:

ov .
W"F...O(F

Discretize vector-valued equations by, e.g. finite difference, finite
element, ...
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Alternative mathematical descriptors

Are there other descriptors to represents the physical entities?
e Particle movements «+» Vectors Z
e Forces « Vectors F

= form of fluid equations: vector-invariant
9 L gVh=0
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Alternative mathematical descriptors

Are there other descriptors to represents the physical entities?
e Particle movements <+ Vectors v
o Forces < Veetors F Linear map: Vectors — Reals
F:Vv—= F(V)eR
= form of fluid equations: vector-invariant covariant

DL gvN=0 Vi:Gu(V)+ gdh(V)=0
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Alternative mathematical descriptors

Are there other descriptors to represents the physical entities?
¢ Particle movements <+ Vectors v
e Forces < Veetors F Linear map: Vectors — Reals
F:Vv—= F(V)eR

= form of fluid equations: vector-invariant covariant

DL gvN=0 Vi:Gu(V)+ gdh(V)=0

Parts of this talk:
©@ What are optimal mathematical descriptors?
® How do covariant equations of GFD look like?
® Application: derivation of structure-preserving discretization
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Mathematical descriptors for fluid motion and forces

4 Motivation  Descriptors  Structured covariant form  Application ~ Summary



Description of movement of fluid particles

Physical properties of particle displacement:
o Displacement has direction and magnitude
o All positions should be accessible

5 Motivation  Descriptors  Structured covariant form  Application ~ Summary



Description of movement of fluid particles

Physical properties of particle displacement:
o Displacement has direction and magnitude
o All positions should be accessible

Mathematical model:
o Affine translation a; = x — x + V in affine space A,
e A, set of point {x, Vi } with vector space V
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Description of movement of fluid particles

Physical properties of particle displacement:
o Displacement has direction and magnitude
o All positions should be accessible

Mathematical model:
o Affine translation a; = x — x + V in affine space A,
e A, set of point {x, Vi } with vector space V

Conserved quantities under ay:

e Alignment and barycenter of
points

¢ Ratio of distance between
aligned pnts

o Parallel lines remain parallel
Not conserved: distances, angles,

ay(x)
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Description of forces

Physical properties of forces*:
e are not directly visible, only by e.g. particle displacement
« cause displacement §v that corresponds to work W = F - |6V

*following Bossavit 99
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Description of forces

Physical properties of forces*:
e are not directly visible, only by e.g. particle displacement
« cause displacement §v that corresponds to work W = F - |6V

Mathematical model:
e Linear maps Fy : vV — Fx(V) € R in dual space V; of V4
o FORCE (covector): DISPLACEMENT (vector) — WORK (real)

*following Bossavit 99
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Description of forces

Physical properties of forces*:
e are not directly visible, only by e.g. particle displacement
« cause displacement §v that corresponds to work W = F - |6V

Mathematical model:
e Linear maps Fy : vV — Fx(V) € R in dual space V; of V4
o FORCE (covector): DISPLACEMENT (vector) — WORK (real)

Properties of affine covectors:
e §V in kernel of Fyx span equipotential surfaces

e Line distance encodes amount of virtual work
performed

*following Bossavit 99
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Description of forces

Physical properties of forces*:
e are not directly visible, only by e.g. particle displacement
« cause displacement §v that corresponds to work W = F - |6V

Mathematical model:
e Linear maps Fy : vV — Fx(V) € R in dual space V; of V4
o FORCE (covector): DISPLACEMENT (vector) — WORK (real)

Properties of affine covectors:
e §V in kernel of Fyx span equipotential surfaces

X X . vector proxy F >
e Line distance encodes amount of virtual work Y
performed {

Given a metric: vector proxy F given by Fy =<F, >; T &
o F metric-dependent: Fx=<Finch, >inch=<Fum, >m -
e F describes only particle trajectories, not whole
field

*following Bossavit 99
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Structured covariant form of equations of GFD
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A split covariant form of n-dimensional rotating Euler’s equations*:

Topological equations:
a,/u+/ (du+2§2mt)+/ ( +w+ﬁ+¢An) -0, at/p+/ pu=0,
oV

Metric equations:
;pU:b\l:’, *xp=p, uﬁ:\_/"
with energy closure for (i) incompressible or (ii) barotropic flows.

e n-dimensional rotating fluid equations
¢ Independent of choice of orientation
« Split equations agree with vector-invariant ones in R?

*Bauer 2014 (submitted to GEM)
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A split covariant form of n-dimensional rotating Euler’s equations*:

Topological equations:
a,/u+/ V(du+2§2mt)+/ ( —|—W+/~¢,+¢An) -0, at/p+/ pu=0,
oV

Metric equations:
Fpu=pu, Fp=p, U=V,
with energy closure for (i) incompressible or (ii) barotropic flows.

e n-dimensional rotating fluid equations
¢ Independent of choice of orientation
« Split equations agree with vector-invariant ones in R?

Structure of equations suggests how to discretize them

*Bauer 2014 (submitted to GEM)
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Topological momentum equation

8, fc u=
e Inner orientation of ¢
C ac, orients boundary

e Terms in units of specific

dc_ energy density [J/kg]

8,/u:
c
u: X(M)—=R velocity 1-form u € Q'(M)
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Topological momentum equation

atfcu: _fci\'/(:rel i .
e Inner orientation of ¢

dc, orients boundary
Cc
e Terms in units of specific
dc_ energy density [J/kg]
Cre
1
6{/U: —/iV(dU"‘ZQrot)
c c
u:X(M)—R velocity 1-form u € Q'(M)
Cret 1 X(M) x X(M) = R rel. vorticity 2-form (e € Q2
d: Q¥ (M) — Q(Mm) exterior derivative
iy QM) = Q(Mm) interior product
VeXx(Mm) auxiliary vector field
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Topological momentum equation

atfcu: _fci\'/(:rel —f(aC+)
e Inner orientation of ¢
+f(dc-) B dcy orients boundary
e Terms in units of specific
dc_ energy density [J/kg]

=f
Crel

—N—
T P

6t/u: —/lg(du+29mt)—/ (—+W+/€—|—¢An)
c c ac N P

u: X(M) =R velocity 1-form u € Q' (M)
Crel - X(M) x X(M) = R rel. vorticity 2-form ¢.e; € Q2
d: Qf(M) = Q*1(M) exterior derivative

iy QM) = Q(Mm) interior product

Vexm) auxiliary vector field

P, W, K, ®an € Q°(M) density, pressure, inner and kin. energy, grav. pot.
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Topological momentum equation

atfcu: _fci\'/(:rel —f(aC+)
e Inner orientation of ¢
+f(dc-) B dcy orients boundary
e Terms in units of specific
dc_ energy density [J/kg]

=f
Crel

—N—
T P

a,/u: —/lg(du+29r0t)—/ (—+W+/€—|—¢'An)
c c ac N P

u: X(M) =R velocity 1-form u € Q' (M)
Crel - X(M) x X(M) = R rel. vorticity 2-form ¢.e; € Q2
d: Qf(M) = Q*1(M) exterior derivative

iy QM) = Q(Mm) interior product

Vexm) auxiliary vector field

P, W, K, ®an € Q°(M) density, pressure, inner and kin. energy, grav. pot.

Top. momentum equation is independent of metric and orientation
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Topological continuity equations
3
2
TL» 1 oV

e Quter orientation of V™ and oV

in Or

in -Or
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Topological continuity equations

e Quter orientation of V™ and oV

inOr e Twisted forms:
................. ﬁ:z {{n ,Or}, {_np’ —OI’}}
in-Or e Terms in units of mass-flux [kg/s]

—6t/ﬁ=
v

PrXM) X . x X(M)" = R density n-form 5 € Q"(M)
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Topological continuity equations

)%
..... e Quter orientation of V™ and oV

Joy¥pu) inOr e Twisted forms:
................. Fim (7. O} (", O}
0 J_ov—2pu)in-Or e Terms in units of mass-flux [kg/s]

V-
7 .
o Jy ="

P X(M) x

pu: X(M)' x

—6t/ﬁ= U
v oV

X XM) = R density n-form p' € Q"(M)

X XM)D 5 R mass-flux (n — 1)-form pu € QD (M)
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Topological continuity equations

3
12
1

)%
..... e Quter orientation of V™ and oV

Joy¥pu) inOr e Twisted forms:
................. Fim (7. O} (", O}
0 J_ov—2pu)in-Or e Terms in units of mass-flux [kg/s]

V-
7 .
o Jy ="

P X(M) x

pu: X(M)' x

—6t/ﬁ= U
v oV

X XM) = R density n-form p' € Q"(M)

X XM)D 5 R mass-flux (n — 1)-form pu € QD (M)

Top. continuity equation is independent of metric and orientation
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Connection between top. momentum and top. continuity equations

« Matching orientations: 9C-. outer orients V*, ¢ outer orients 9V
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Connection between top. momentum and top. continuity equations

in Or 7 / <
- q
= 2 o —
KPS r » LT
b 3l fin-or gl 0
/ -
*:p—=p

[m°] : [kg/m’] — [kg]
« Matching orientations: 9C-. outer orients V*, ¢ outer orients 9V
e Unique map: * : p — p = {{x%, Or}, {— 3, —Or}}
o % : QM) — Q"K(M) in n dimensions

11 Motivation  Descriptors  Structured covariant form  Application  Summary



Connection between top. momentum and top. continuity equations

3, in Or . ]
7. P © O Zpu)in Or
;p\;:_-“:u, ----- > & e XU i A
“= . b [ 7% in -Or 0 ~+3pu)in -Or
/ :":F g
*:p—=p %: (pu) — pu
[m®] : [kg/m’] — [kg] [m?/m'] : [kg/m/s] — [kg/s]

« Matching orientations: 9C-. outer orients V*, ¢ outer orients 9V
e Unique map: * : p — p = {{x%, Or}, {— 3, —Or}}

o % : QM) — Q"K(M) in n dimensions
 Unique map: * : (pu) — pu := {{x%(pu), Or}, {—x¥pu), - Or}}
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Connection between top. momentum and top. continuity equations

3 in Or . ]
P P © O Apu)in Or
P T A, *pd) L
s 3 P - % | |in-oOr 0 ~%pu)in -Or
J::::'.'_',%"‘ c g
*:p—=p %: (pu) — pu
[m°] : [kg/m’] — [kg] [m?/m'] : [kg/m/s] — [kg/s]

e Matching orientations: 0C. outer orients V=, ¢ outer orients 9V
e Unique map: * : p — p = {{x%, Or}, {— 3, —Or}}

o % : QM) — Q"K(M) in n dimensions
 Unique map: * : (pu) — pu := {{x%(pu), Or}, {—x¥pu), - Or}}

Metric equations close the set of equations and provide metric
information
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Application: Structure-preserving discretization
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Application: structure-preserving discretization

Example: Split linear shallow-water equations

Systematic discretization method:
© Discretize manifolds by computational meshes

® Discretize differential forms by interpolation functions, e.g. finite
element (piecewise constant, piecewise linear, ...)

® Discretize metric equations, e.g. using diagonal matices
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Discretization of the topological momentum shallow-water equation:

e Integral form: Vc € M : M Ve e M
8;fcu1+gfach:0 u'
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Discretization of the topological momentum shallow-water equation:

e Integral form: Vc € M :

O Jou' +9 foch=0

e Approximate manifolds:
M=K, cx} e

e Approximate forms:
u', h piecewise constant
= U~ [yu'ithy = [, h
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Discretization of the topological momentum shallow-water equation:

e Integral form: Yc € M :

O Jou' +9 [oeh=0

e Approximate manifolds:
M=K, cx> e

e Approximate forms:
u', h piecewise constant
= U~ [Luithy = [, h

= Matrix form of the topological momentum equation:
Ue, o —-1.. 1.0 hy,
Ot : +g| - : : =0
Ue,ye, -1 0. 1.. 0 hyv,

e Ge M(IK¢| x |KY|)is £1if v € de
o Algebraic equation is metric-free

G
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Discretization of the topological continuity shallow-water equation:

e Integral form: VA€ M :
O [P +H [, ul =0
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Discretization of the topological continuity shallow-water equation:

e Integral form: VA€ M :
6th77\§+HfaAZF =0

e Approximate manifolds:
M=K A=)/ f

e Approximate forms:
Eé,ﬁ piecewise constant
by ~ Je B2, £Uor = [, U
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Discretization of the topological continuity shallow-water equation:

e Integral form: VA€ M :
6thE§+ HfaAZF =0

e Approximate manifolds:
M=K A=)/ f

e Approximate forms:
Eé,ﬁ piecewise constant
by ~ Je B2, £Uor = [, U

= Matrix form of the topological continuity equation:

hy 0 -1..1..0 U
ol | HHL : © | =0
hflel -1 0.. 1.0 bd Ue?Kel

e DI c M(|K'| x |K®|)is &1 if et € Of
o Algebraic equation is metric-free
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Discretization of metric shallow-water equations

e Continuous metric equations:
Fih—=h %0 = U
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Discretization of metric shallow-water equations

ContinuoNus metric quu/ations:
Fih—=h %0 = U
Approximate * by
diagonal matrices:

e x:h— h= #h

o x:U—U=%u

*0, %1 connect algebraic momentum and continuity equation
Endows metric-free equation with metric information
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Discretization of metric shallow-water equations

Continu%s metric quu/ations:
Fih—=h %0 = U
Approximate * by
diagonal matrices:

e x:h— h= #h

o x:U—U=%u

*0, %1 connect algebraic momentum and continuity equation
Endows metric-free equation with metric information

Resulting scheme — hexagonal C-grid

hv - hv 1 #edges
Otle+g % =0, 0thv+H'A7 Z () de;Ue; = 0, %
A fi=
=gradt (hy) =divy(Ue)
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Benefits of this approach

e Switch primal and dual mesh = triangular C-grid scheme
e Tri/hex are structure-presering: R-G=0andD-R=0
e Schemes are stable on uniform/non-uniform meshes

grads, grad, (non-uniform) operators on triangles (curlec)  operators on hexagons (divy)

10° 10° 10"
10" 10" Einsiiii 10° |
NS
§ 107 § 107 b 810"
5 5 5
s s s
i L g
5,50 5 1o°|[---slopeof 2 5,07
210 210 210
= ~~=slope of -2 = - - -slope of -1 = -~ -slope of 2
L, orad, oL uni . L, uni
L, grad, L, uni AN L, uni
af| et orad, . r i
10 . grad, P | I . 10 L uni
ce-Lygrad, Cebgnonuni| S 4L non-uni
~4-Lygrad i FI -4 L, non-uni i B ~ 4 -L,non-uni
—o-L,grad, 4 -Lnon-uni g ~4-L, non-uni
s s “
10 10 10
10° 10° 10* 107 10° 10° 10° 10° 10° 10° 10°
Number of cells

10* 10"
Number of cells Number of cells
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Summary and Outlook
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Summary and Outlook

Summary
» Differential forms optimally describe force fields

e Using straight/twisted differential forms, the equations are
independent of orientation

e Split equations are ordered with respect to mathematical
structures required (affine space + metric + orientation)

o Similarly structured discrete equations exist in literature (Cotter
and Thuburn 2013, Bossavit 2005)

e The split form proposes a systematic discretization using
algebraic approaches or finite element exterior calculus

Outlook
o Further analytical studies of the split equations

o Use higher order FE to approximate differential forms
e Use non-diagonal Hodge star matrices
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