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Affine elements
An affine element is an element that can be obtained from
translation plus linear transformation of the canonical reference
element.

Non-affine elements occur if we have:
quadrilaterals on sphere,
higher-order triangulations on the sphere,
3D prism mesh of spherical annulus (unless shallow
atmosphere approximation is used).

Take-home message

Special care must be taken when using compatible finite
element spaces with non-affine elements.

CJC Bendy FEM



Compatible finite element spaces

H1 ∇⊥ÐÐÐ→ H(div) ∇⋅ÐÐÐ→ L2

×××Ö
π0

×××Ö
π1

×××Ö
π2

V0 ∇⊥ÐÐÐ→ V1 ∇⋅ÐÐÐ→ V2

Requirements
1 ∇⋅ maps from V1 onto V2, and ∇⊥ maps from V0 onto

kernel of ∇⋅ in V1.
2 Commuting, bounded surjective projections πi exist.

Application to SWE, steady geostrophic modes, absence of spurious
pressure modes, necessary conditions for absence of spurious mode
branches: CJC and J. Shipton, Mixed finite elements for numerical weather
prediction, JCP (2012).
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Example FE spaces

V0 = P2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Quadratic, Continuous

∇⊥ÐÐÐ→ V1 = BDM1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Linear, Continuous normals

∇⋅ÐÐÐ→ V2 = P0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Constant, Discontinuous
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Construction strategy

Strategy for constructing V0, V1, V2 on curved surfaces
1 Choose a reference element ê, and construct Vi(ê),

i = 0,1,2, such that:
1 ∇⊥ maps V0(ê) to V1(ê), and
2 ∇⋅ maps V1(ê) to V2(ê).

2 For each mesh element e, choose ge ∶ ê → e and find
transformations Vi(ê) → Vi(e) such that:

1 ∇⊥ maps V0(e) to V1(e),
2 ∇⋅ maps V1(e) to V2(e), and
3 interelement continuity conditions are satisfied.

For ψ ∈ V0(e) we take ψ ○ ge ∶= ψ′ ∈ V0(ê).

What about V1 and V2?

CJC Bendy FEM



Construction of V1

ge

ge ∶ ê → e, x = ge(x̂).

Definition (Piola transformation)

The Piola transformation û ↦ u:

u ○ ge =
1

det J
Jû, J = ∂ge

∂x̂
.

Properties

(1) ∫f φ̂û ⋅ n̂ ds = ∫ge(f) φu ⋅n ds, φ ○ ge = φ̂.
Property (1) ensures correct
interelement continuity.
(2) (∇x ⋅ u) ○ ge = ∇x̂ ⋅û

det J .

Implementation: M. Rognes, D. Ham, CJC and A. McRae,
Automating the solution of PDEs on the sphere and other
manifolds in FeniCS (GMDD, 2013).
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Construction of V2

Properties of Piola transformation

(1) ∫f φ̂û ⋅ n̂ ds = ∫ge(f) φu ⋅ n ds, φ ○ ge = φ̂.
(2) (∇x ⋅ u) ○ ge = ∇x̂ ⋅û

det J .
Property (2) then prescribes how V2(e) must be constructed.

To satisfy uδ ∈ V1(e) Ô⇒ ∇ ⋅ uδ ∈ V2(e), we must have

φδ ○ ge =
φ̂δ

det J
, for φ̂δ ∈ V2(ê).
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Reconstructing the mass flux

Dt +∇ ⋅ (uD) = 0.

Choose: Dδ ∈ V2, uδ ∈ V1.

Mass flux reconstruction
For any spatial discretisation using these spaces we can find
Fδ ∈ V1 such that

Dδ
t +∇ ⋅ F δ = 0, POINTWISE.

Local construction of F δ depends crucially on integration by
parts:

∫e φδ∇ ⋅ F δ dx = −∫e ∇φδ ⋅ F
δ dx + ∫∂e φ

δF δ ⋅ n ds.

so integration must be done exactly1.

1See Jemma Shipton’s poster for details.
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Reconstructing the mass flux (II)

∫
e
φδ∇ ⋅ F δ dx = ∫

ê

φ̂δ

det J
∇x̂ ⋅ F̂

δ

det J
det J dx̂ ,

= ∫
ê
φ̂δ
∇x̂ ⋅ F̂

δ

det J
dx̂ .

Problem
The integrand is not polynomial and thus cannot be integrated
exactly using numerical quadrature.

Solution

Choose instead that φδ ∈ V2(e) Ô⇒ φδ ○ ge = φ̂δ ∈ V2(ê).
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Secondary problem

uδ ∈ V1 does not imply that ∇ ⋅ uδ ∈ V2 any more.

Solution

Replace ∇ ⋅ uδ with π2∇ ⋅ uδ.

H1 ∇⊥ÐÐÐ→ H(div) ∇⋅ÐÐÐ→ L2

×××Ö
π0

×××Ö
π1

×××Ö
π2

V0 ∇⊥ÐÐÐ→ V1 π2∇⋅ÐÐÐ→ V2

This is an extension of Bochev and Ridzal (2008) who replaced ∇⋅ with DIV in
the particular case of RT0 on quadrilaterals.
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Mixed Helmholtz problem

Strong primal form:
∇2D −D = f .

Strong mixed form:

u = ∇D, ∇ ⋅ u −D = f .

Weak mixed Helmholtz problem

Given f , find u ∈ H(div), D ∈ L2, such that

∫
Ω
τ ⋅ u dx + ∫

Ω
∇ ⋅ τD dx = 0, ∀τ ∈ H(div),

−∫
Ω

vD dx + ∫
Ω

v∇ ⋅ u dx = ∫
Ω

vf dx , ∀v ∈ L2.
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Discrete mixed Helmholtz problem

Given f , find uδ ∈ V1, Dδ ∈ V2, such that

∫
Ω
τ δ ⋅ uδ dx + ∫

Ω
∇ ⋅ τ δDδ dx = 0, ∀τ δ ∈ V1,

−∫
Ω

vδDδ dx + ∫
Ω

vδ∇ ⋅ uδ dx = ∫
Ω

vδf dx , ∀vδ ∈ V2.

Theorem
For the conditions on V0, V1, V2, described above, a unique
solution Dδ exists, with ∥D −Dδ∥L2 converging at the optimal
rate.

Unifying theorem in Arnold, Falk, Winther (Bull. Amer. Math. Soc, 2010) generalises this and collects together
various results from Brezzi, Fortin, Raviart, etc.
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Convergence for flat elements
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Cannot achieve better than second order with flat elements.
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Practical implementation

Trick
Take mapping g from flat element mesh Ω′ to curved element
mesh Ω, and define u′,τ ′ ∈ V1(Ω′), φ′, D′ ∈ V2(Ω′) via:

uδ ○ g = Ju′

det J
, φδ ○ g = φ′.

Pullback implies that

∫
Ω
φδ∇ ⋅ uδ dx = ∫

Ω′
φ′∇ ⋅ u′ dx ′.

On the flat element mesh Ω′, equations are:
Given f , find u′ ∈ V1, D′ ∈ V2(Ω′), such that

∫
Ω′
(Jτ ′) ⋅ (Ju′) dx

det J
+ ∫

Ω′
∇ ⋅ τ ′D′ dx = 0, ∀τ ′ ∈ V1(Ω′),

−∫
Ω′

v ′D′ det J dx + ∫
Ω′

v ′∇ ⋅ u′ dx = ∫
Ω′

v ′f det J dx , ∀v ′ ∈ V2(Ω′).
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On the flat element mesh Ω′, equations are:
Given f , find u′ ∈ V1, D′ ∈ V2(Ω′), such that

∫
Ω′
(Jτ ′) ⋅ (Ju′) dx

det J
+ ∫

Ω′
∇ ⋅ τ ′D′ dx = 0, ∀τ ′ ∈ V1(Ω′),

−∫
Ω′

v ′D′ det J dx + ∫
Ω′

v ′∇ ⋅ u′ dx = ∫
Ω′

v ′f det J dx , ∀v ′ ∈ V2(Ω′).

Dolfin code snippet:

V = FunctionSpace(mesh, "RT", 3)
Q = FunctionSpace(mesh, "DG", 2)
W = MixedFunctionSpace((V, Q))
(sigma, u) = TrialFunctions(W)
(tau, v) = TestFunctions(W)
a = (inner(J*sigma, J*tau)/detJ + div(sigma)*v

+ div(tau)*u-v*u*detJ)*dx
L = g*v*detJ*dx
w = Function(W)
solve(a == L, w)
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Convergence on curved element mesh
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Third order convergence is achieved with curved elements.
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Conclusions

Conclusions
Non-affine elements are necessary to achieve higher order
convergence on curved surfaces (also necessary for
quadrilateral and wedge elements on sphere).
The properties of compatible finite elements can be
restored on curved elements by replacing ∇⋅ with π2∇⋅.
Codes for flat elements can be adapted to use curved
elements with minimal intervention using transformation
from flat to curved elements.
See Jemma Shipton’s poster and Tom Melvin’s talk for
application to shallow water equations on the sphere.
See John Thuburn’s talk for testing of alternative approach
using compound elements.
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Projections

Definition of π1 ∶ H(div) → V1, uδ = π1u,
1 For each element edge f , ∫f φδuδ ⋅ n ds = ∫f φδu ⋅ n ds,
∀φ ∈ V2,

2 For each element e, ∫e ∇φδ ⋅ uδ dx = ∫e ∇φδ ⋅ u dx , ∀φ ∈ V2,
3 For each element e, ∫e ∇⊥ψδ ⋅ uδ dx = ∫e ∇⊥ψδ ⋅ u dx ,
∀ψδ ∈ V0 with ψδ = 0 on ∂e.

Definition of π2 ∶ L2 → V2, hδ = π2h,
∫e φδhδ dx = ∫e φδh dx , ∀φδ ∈ V2.
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Commuting property

Diagram commutes since

∫
e
φδπ2∇ ⋅ u dx = ∫

e
φδ∇ ⋅ u dx

= −∫
e
∇φδ ⋅ u dx + ∫

∂e
φδu ⋅ n ds,

= −∫
e
∇φδ ⋅ π1u dx + ∫

∂e
φδπ1u ⋅ n ds,

= ∫
e
φδ∇ ⋅ π1u dx , ∀φδ ∈ V2,

so π2∇ ⋅ u = ∇ ⋅ π1u.
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Mass flux reconstruction

... but ... (∇ ⋅ F) ○ ge =
∇̂ ⋅ F̂
det J

∉ V2(ê),

so we can’t write Dt +∇ ⋅ F = 0 pointwise!

Solution: we have

∫
e
φDt dx + ∫

e
φ∇ ⋅ F dx = 0.

Pulling back: ∫
ê
φ̂D̂t det J dx̂ + ∫

ê
φ̂∇̂ ⋅ F̂ dx̂ = 0.

Choose D̃t/det J ≈ D̂t such that

∫
ê
φ̂D̂t det J dx̂ = ∫

ê
φ̂D̃t dx̂ .

Then, D̃t + ∇̂ ⋅ F̂ = 0, pointwise.
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