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Quasi-uniform grids on the sphere

Saff and Kuijlaars 1997

• Chemistry: Stable molecular structure (buckminsterfullerene)

• Physics: Location of identical point charges (J. J. Thomson’s
problem)

• Computation: Quadrature on the sphere and computational
complexity

• Botany: Distribution of pores on pollen (Tammes’s problem)

• Viral morphology, crystallography etc.

Workshop on the Partial Differential Equations on the Sphere 2014 1



Spherical Helix Takeshi Enomoto

Proposed approaches

• Geodesic grids (Williamson 1968; Sadourny et al. 1968)
NB. Spring dynamics used in NICAM
(Tomita et al. 2001; Tomita and Satoh 2004)

• Cubed sphere (Sadourny 1972; McGregor 1996)

• Reduced (Kurihara 1965; Hortal and Simmons 1991)

• Yin-Yang (Kageyama and Sato 2004; Purser 2004)

• Fibonacci (Swinbank and Purser 2006)

• Conformally mapped polyhedra (Purser and Ranc̆ić 2011)
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Dissection of an icosahedron

• Division of each side of
20 equilateral triangles into n

• N = 10n2 + 2 points in total

• With bisection of edges n = 2l,
N = 10(2l)2 + 2 = 12, 42, 162,
642, 2562, 10242, ...
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FIGURE 2.-Construction of the grid on a spherical triangle, 
for n=6. 
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FIGURE 3.-Representation of the icosahedral-hexagonal grid, 
for n=6. 

We divide the great circle arcs AB and AC into n equal 
arcs, to  give the points B1, . . ., Bn-l, B, (coinciding with 
B) and Cl, . . ., C, (coinciding with 0. Then we take 
each great circle arc BiCi and divide it into i equal parts. 
The distance between adjacent grid points, in any direc- 
tion, varies by less than 10 percent over the spherical 
triangle. 

If 0 is the center of the sphere, then we have to solve 
the linear system 

n dd 

OA . OBt=cos{ (i/n)AB), 
OB. OBi= cos { (1  -i/n)AB}, 

n A -  

-A- 

(OA, OB,  OBJ=O. 

FIGURE 4.-Indexing of a rhombus cell, for n=6. 

The third equation expresses the condition that 0, A, B, 
Bi be coplanar. Here the radius of the sphere is equal to 
1, and A 2  is the arc AB measured in radians. 

In Cartesian coordinates this system is expressed by 

 xi+ YAY*+ ~ A Z F  a~ 9 

xBxi+  Y B y t  + z B z t =  a B ,  1:: Yf Y A  +o, 
XB Y B  

h n 
where LU,=COS{ (;/..)AB} and aB=cos{ (I-i/n)AB). We 
solve this system for xt, y t ,  Zi. 

Each point on the face or edge of one of the 20 faces 
of the icosahedron is now surrounded by six triangles and 
is therefore in the center of a hexagon. However, the 
points which form the vertices of the icosahedron are 
surrounded by only five triangles and therefore these 12 
singular points are the centers of pentagons. 

As shown in figure 3, the poles were chosen as two 
pentagonal points. The triangular faces of the icosahedron 
were arranged into 10 pairs of adjoining faces, forming 
10 rhombuses; five around the North Pole and five around 
the South Pole, indexed from 1 to 10. The grid points 
inside each rhombus were indexed with two indices (i, j ) ,  
as shown in the example of figure 4. The two Poles, where 
five rhombuses meet, are treated separately, but with 
the same finite difference scheme as the other vertices. 

For the simplicity of the programming, all the fields 
were defined in a lOX(n+2)X(n+2) array. The over- 
lapping simplified the programming on the boundaries 

Sadourny, Arakawa and Mintz

(1968)
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Spherical helix

• λ = mθ mod 2π,
m ≡ dλ/dθ (slope)

• The length of a segment
kept equal to the spacing
between adjacent turns

• No limitations on the
number of grids
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Spherical helix for spherical SOM
(self-organizing maps)

Nishio, Altaf-Ul-Amin, Kurokawa and Kanaya (2006)

λ = 2
√
Nθ mod 2π (1)

Compute the spiral length L numerically and arrange neurons at
equal intervals.

With L ≈ 2m for large m = 2
√
N the ratio between the adjacent

turns and the segment length is

2π

m

N

2m
=
Nπ

m2
=
π

4
6= 1 (2)
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Generalized spiral points

Rakhmanov, Saff and Zhou (1994)

θk = arccos(hk), hk = −1 +
2(k − 1)

N − 1
, 1 ≤ k ≤ N (3)

λk =

(
λk−1 +

c√
N(1− h2k)

)
mod 2π (4)

c = 3.6 <

(
8√
3

)1/2

= 3.809 (5)
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The best packing on the sphere

Saff and Kuijlaars (1997)

• Hexagons except for 12 pentagons in the optimal arrangement.

• The area of the hexagon with the unit distance is
√
3/2.

• Ignoring the pentagonal cells, assume the sphere is covered by
hexagonal Dirichlet cells

N

√
3

2
δ2N = 4π (6)

Thus the scaling factor is δN = (8π/
√
3)1/2N−1/2

Workshop on the Partial Differential Equations on the Sphere 2014 7



Spherical Helix Takeshi Enomoto

Rakhmanov et al. (1994)

δ = (λk − λk−1)
√
1− hk (7)

= (λk − λk−1) sin θk =
c√
N

(8)

m =
2π

δ
=

√
3

8π
π
√
N =

√
3

2

√
πN (9)

The ratio between the interval of the adjacent turns and the segment
length is

2π

m

N

2m
=
Nπ

m2
=

2

3
6= 1 (10)
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Spherical spiral

Bauer (2000)

θk = arccos(hk), hk = 1− 2k − 1

N
, 1 ≤ k ≤ N (11)

λ =
√
Nπθ mod 2π (12)

With L ≈ 2m for large m =
√
Nπ the ratio between the adjacent

turns and the segment length is

2π

m

N

2m
=
Nπ

m2
= 1 (13)
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Analytically exact spiral

Koay (2011)
A line element

ds =
√
1 +m2 sin2 θdθ, m ≡ dλ

dθ
(14)

is integrated to yield

L(π) = 2E(−m2), E(l) ≡
∫ π/2

0

√
1− l sin2 θdθ (15)

E(l) is the complete elliptic integral of the second kind and
L(π) ≈ 2m for large m.
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Bauer (2000) Koay (2011)
C.G. Koay / Journal of Computational Science 2 (2011) 88–91 89

Fig. 1. A surface element and a line element on the unit sphere.

leads to the following equation between ! and ":

" = m!. (3)

By substituting Eq. (3) into Eq. (2) and integrating Eq. (2) from
0 to #, with 0 ≤ $ ≤ %, it is clear that the length of a segment of
the spiral curve, denoted by S($), can be described precisely by the
elliptic integral of the second kind as shown below:

S($) =
{

2E(−m2) − E(% − $| − m2) : %/2 < $ ≤ %
E($| − m2) : 0 ≤ $ ≤ %/2

(4)

Please note that our definition of the elliptic integral of the second
kind is given by the following expression, which is consistent with
our previous work in [9]:

E("|m) =
∫ "

0

√
1 − m sin2(!) d!, 0 ≤ " ≤ %/2 (5)

E(m) ≡
∫ %/2

0

√
1 − m sin2(!) d!. (6)

Note also that E(m) is known as the complete elliptic integral of
the second kind. Thus, the total length of the spiral curve is given
by 2E( − m2), i.e., S(%) = 2E( − m2). A well-known and interesting
property noted and used by Bauer in his spiral scheme was that
S(%) asymptotically approaches 2m, denoted as S(%) ∼ 2m, because
E( − m2) ∼ m for large m.

The second step is to divide the spiral curve into n segments of
equal length, which is S(%)/n, and then collect the center point of
each segment along the spiral curve as an element of the desired
point set. To ensure that the spacing between adjacent turns of the
spiral curve is not too close or too wide, we will keep the spacing
between adjacent turns of the spiral curve to be equal to the length
of a segment. This construction can be viewed from the point of
view of keeping the area enclosed by a segment and the spacing
between adjacent turns of the spiral curve to be nearly equal for
every segment. Due to this simple relationship, " = m!, the spacing
turns out to be 2%/m because as the spiral makes a complete turn,
" completes a cycle, which is 2%. Therefore, we have the criterion:

2%/m = S(%)
n

(7)

or

m = 2n%
S(%)

, (8)

m = n%
E(−m2)

. (9)

It is interesting to note that Eq. (9) is a fixed point formula for
m and can be solved directly, see for example another example
of fixed point formula in MR analysis of signals [7]. Specifically,
let us define g(m) = n%/E( − m2) and iterate the function g on itself
such that |gi(m0) − mi−1| < ε for some nonnegative integer i and

Fig. 2. The new spiral point set of 88 points and its Voronoi tessellation.

a small fixed positive number ε, e.g., ε = 1.0 × 10−8. Note that gi

denotes composition of the function, g, i number of times, i.e.,
gi(m0) ≡ g( · · · g(g(m0))). Any iterative scheme requires good start-
ing values. Here, we use the asymptotic form of the solution which
is m∼

√
n% because E( − m2) is asymptotically equal to m for large

m. The iteration based on Eq. (9) is highly inefficient and con-
verges very slowly when m is large. This inefficiency can be gleaned
from the first order derivative of Eq. (9) with respect to m. Specif-
ically, although the absolute value of the derivative is less than
unity, which implies convergence, it approaches unity in the limit
when m approaches infinity. For completeness, we have included
in Appendix A a highly efficient iterative approach based on New-
ton’s method. For example, when n = 500 the fixed point method
and Newton’s method took 4884 and 4 iterations, respectively, at
the ε level of 1.0 × 10−8 and with the initial solution of m∼

√
n%.

It is a significant gain in performance with at least three order of
magnitude! Further examples are shown in Fig. 2.

Finally, the last step is to find the midpoint of each segment once
we have the value of m. Based on the criterion stated above, we
know that the length of each segment is exactly 2%/m. Therefore,
the point, #, at the end of the first spiral segment should satisfy the
following equation:

S($) = 2%/m. (10)

Similarly, we can find the midpoint of each segment but we will
have to solve for $j in the following equation:

S($j) = (2j − 1)%/m, j = 1, . . . , n. (11)

We define here an ‘inverse function’ of S, denoted by S−1, as a con-
cise notation for expressing the solution above, i.e.,

$j = S−1((2j − 1)%/m), j = 1, . . . , n. (12)

Solving the nonlinear equation above requires reasonable initial
solutions. Here, we used $j = cos−1(1 − ((2j − 1)/n)) for j = 1, . . ., n as
the initial set of #j’s. This nonlinear equation can be solved via New-
ton’s method of root-finding, which was mentioned in Appendix A.
Please refer to Appendix B for the specific algorithm for the iterative
map of #.

It is clear then a desired spiral point set, {($j, ˚j)}
n
j=1, based

on the proposed scheme can be constructed by following the
three steps described above. Please note here that ˚j = m$j for
all j. For completeness, the spiral points in Cartesian coordinates,

Workshop on the Partial Differential Equations on the Sphere 2014 11



Spherical Helix Takeshi Enomoto

Energy minimization on a sphere

The generalized energy for N points ωN = {x1,x2, ...,xN} on the
sphere

E(α, ωN) ≡





∑

1≤i<j≤N

log
1

|xi − xj|
if α = 0

∑

1≤i<j≤N

|xi − xj|α if α 6= 0
(16)
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Various measures

• α = 1: Maximization of distance E(1, ωN)

• α = 0: Minimization of the logarithmic energy E(0, ωN)
(maximization of the product of distances).
Logarithmic extreme points

• α = −1: J. J. Thomson’s problem.
Minimization of energy E(−1, ωN).
Fekete points

• α→∞: The best packing on the sphere
(Tammes’s problem, the hard sphere problem).
Maximization of the smallest distance among N points.
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Theoretical approximation

Rakhmanov, Saff and Zhou (1994)

f(−1, N) =
N2

2
− 0.55230N3/2 + 0.0689N1/2 (17)

f(0, N) = −1
4
log

(
4

e

)
N2 − 1

4
N logN − 0.026422N + 0.13822

(18)

f(1, N) =
2

3
N2 − 0.40096N1/2 − 0.188N−1/2 (19)
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Comparison of homogeneity

Compare norms with N = 12, 42, 162, 642, 2562, 10242

• Sadourny et al. (1968)

• Tomita and Satoh (1994)

• Rachmanov et al. (1994)

• Bauer (2000)
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Logarithmic energy

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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Energy

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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Distance

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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The number of points within a radius

The points within r < π/6 with N = 400
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Variance N = 642

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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Variance N = 2562

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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Variance N = 10242

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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“Untidiness”

Nishio et al. (2006)

Sadourny et al. (1968)
Tomita and Satoh (1994)
Rachmanov et al. (1994)
Bauer (2000)
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Design choices

• Voronoi tessellation

• Approximate ME: quadrature with spherical harmonics

• 1D structure: interpolation. Semi-Lagrangian advection

• Weaknesses: 2D decomposition, local subdivision, ...
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Summary

• Quasi-uniform grids can be easily generated with a spherical helix.

• Spherical helix grids are more uniform than geodesic grids in
various measures.

• The ratio between the adjacent turns and the segment length is
unity in Bauer (2000) and Koay (2011) and not in Rakhmanov et
al. (1994) and Nishio et al. (1997).

• The spiral length is approximated in Bauer (2000) and computed
with an iterative scheme without approximation in Koay (2011).

• Design choices remain for the use in dynamical cores
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