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Quasi-uniform grids on the sphere

Saff and Kuijlaars 1997

e Chemistry: Stable molecular structure (buckminsterfullerene)

e Physics: Location of identical point charges (J. J. Thomson's
problem)

e Computation: Quadrature on the sphere and computational
complexity

e Botany: Distribution of pores on pollen (Tammes's problem)

e Viral morphology, crystallography etc.
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Proposed approaches

e Geodesic grids (Williamson 1968; Sadourny et al. 1968)
NB. Spring dynamics used in NICAM
(Tomita et al. 2001; Tomita and Satoh 2004)

e Cubed sphere (Sadourny 1972; McGregor 1996)

e Reduced (Kurihara 1965; Hortal and Simmons 1991)

e Yin-Yang (Kageyama and Sato 2004; Purser 2004)

e Fibonacci (Swinbank and Purser 2006)

e Conformally mapped polyhedra (Purser and Ranci¢ 2011)
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Dissection of an icosahedron

e Division of each side of
20 equilateral triangles into n

NORTH POLE

e N = 10n? + 2 points in total

e With bisection of edges n = 2,
N =10(2)2 +2 = 12,42, 162,

642, 2562, 10242, ...
Sadourny, Arakawa and Mintz

(1968)
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Spherical helix

e A\ =mbf mod 2,
m = d\/df (slope)

e The length of a segment
kept equal to the spacing
between adjacent turns

e No Iimitations on the
number of grids
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Spherical helix for spherical SOM
(self-organizing maps)

Nishio, Altaf-Ul-Amin, Kurokawa and Kanaya (2006)
A=2VNO mod 2r (1)

Compute the spiral length L numerically and arrange neurons at
equal intervals.

With L =~ 2m for large m = 2+/ N the ratio between the adjacent
turns and the segment length is

QWN_NW:z%l (2)

m2m m2 4
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Generalized spiral points

Rakhmanov, Saff and Zhou (1994)

2(k —1
0 = arccos(hg), hy = —1 + ](\];_1), 1<k<N (3)
c
A= | A1+ mod 27 (4)
( V(- hi))
g\ 1/2
c=36< (— — 3.809 (5)
7)
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The best packing on the sphere

Saff and Kuijlaars (1997)

e Hexagons except for 12 pentagons in the optimal arrangement.
e The area of the hexagon with the unit distance is v/3/2.

e |gnoring the pentagonal cells, assume the sphere is covered by
hexagonal Dirichlet cells

3
Ng(i?\, — 47 (6)
Thus the scaling factor is o = (87/v/3)Y/2N—1/2
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Rakhmanov et al. (1994)

5= (A — o)1 — ha (7)

= (A — Ap_1)sin b = \/LN (8)

m:?:\/gwm:\@m (9)

The ratio between the interval of the adjacent turns and the segment
length is

2r N N 2

T o2 (10)

m2m ~ m2 3
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Spherical spiral

Bauer (2000)

2k —1

0, = arccos(hy), hy =1 — ,1<kE<N (11)

A=+VNnf mod 27 (12)

With L =~ 2m for large m = v N the ratio between the adjacent
turns and the segment length is

27 N _N7T_
m2m m2

| (13)
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Analytically exact spiral

Koay (2011)
A line element

ds = V14 m?sin®6d6, m = % (14)

Is integrated to yield

L(m) = 2E(—m?), E(]) = /Om V1 — [sin®6d0 (15)

E(l) is the complete elliptic integral of the second kind and
L(m) =~ 2m for large m.
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Spherical Helix

Koay (2011)

11
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Energy minimization on a sphere

The generalized energy for N points wy = {x1, 2, ...,xNn} on the
sphere

Ela,wy) =

[t
2
AN
<.
IA
Z
—~~
| —
(@)
~
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Various measures

e o = 1: Maximization of distance E(1,wy)

e « = 0: Minimization of the logarithmic energy FE(0,wn)
(maximization of the product of distances).
Logarithmic extreme points

e o= —1: J. J. Thomson's problem.
Minimization of energy E(—1,wy).
Fekete points

e o« — o0: The best packing on the sphere

(Tammes's problem, the hard sphere problem).
Maximization of the smallest distance among N points.
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Theoretical approximation

Rakhmanov, Saff and Zhou (1994)

f(=1,N) = N; — 0.55230N3/2 4-0.0689N /2 (17)
f(0,N) = —i log (g) N? — %Nlog N —0.026422N + 0.13822

(18)

f(1,N) = %NQ — 0.40096N1/2 — 0.188N ~1/2 (19)
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Comparison of homogeneity

Compare norms with N = 12,42,162, 642, 2562, 10242

e Sadourny et al. (1968)
e Tomita and Satoh (1994)
e Rachmanov et al. (1994)

e Bauer (2000)
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Logarithmic energy

log energy
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Energy
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Distance

distance
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The number of points within a radius
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Variance N = 642
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Variance N = 2562

n=2562
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Variance N = 10242

n=10242
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“Untidiness”
Nishio et al. (2006)
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Design choices

e \oronoi tessellation
e Approximate ME: quadrature with spherical harmonics
e 1D structure: interpolation. Semi-Lagrangian advection

e \Weaknesses: 2D decomposition, local subdivision, ...
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Summary

e Quasi-uniform grids can be easily generated with a spherical helix.

e Spherical helix grids are more uniform than geodesic grids in
various measures.

e The ratio between the adjacent turns and the segment length is
unity in Bauer (2000) and Koay (2011) and not in Rakhmanov et
al. (1994) and Nishio et al. (1997).

e The spiral length is approximated in Bauer (2000) and computed
with an iterative scheme without approximation in Koay (2011).

e Design choices remain for the use in dynamical cores
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