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The Spectral Element Method and Stabilization
The Spectral Element Method (SEM)

I Continuous Galerkin finite element method with a diagonal
mass matrix and Gauss-Lobatto quadrature leads to high
scalability.

I Requires stabilization (hyperviscosity).

Figure: A uniform mesh



The Spectral Element Method and Stabilization

Both dynamics and tracers use vertical Lagrangian remap. For this
research, only 2D discretizations are considered.
Stabilization is needed for both damping of 2∆x wave and
enstrophy cascade. The hyperviscosity coefficient depends on
spatial scales: qt = C (∆x)4∆2q or qt = C (∆x)3.2∆2q.



Hyperviscosity (HV) in SEM

Hyperviscosity:
ν∆2q or ν∆2~u

Coefficient ν scales like (∆x)p with p = 4 or p = 3.2.
Works well for uniform meshes.
In CAM-SE HV incorporates∫

sphere
φiqt =

∫
sphere

φi∆q = −
∫
sphere

∇φi · ∇q

We focus on the local integral,∫
element

∇φi · ∇q.



Elements in Physical and Reference Spaces

Transform:

ξ, η ∈ [−1, 1]× [−1, 1] x(ξ, η), y(ξ, η)

∫
element

∇xyφi · ∇xyq =

∫
[−1,1]2

JD−T∇ξηφi · D−T∇ξηq

=

∫
[−1,1]2

J∇ξηφi · D−1D−T∇ξηq
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Local Dimensions from Metric Tensors
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∆x , ∆y are interpreted as dimensions of an element.

Tensor HV:
Instead of ∇ξηφi · D−1D−T∇ξηq, take

∇ξηφi · D−1VD−T∇ξηq
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Transition from the traditional HV: Instead of qt = C (∆x)p∆2 we
take

qt = C (∇ · V∇)2q or qt = C (∇ · V2∇)(∇ · ∇q).



Shallow Water Tests

Standard tests for dycores in Williamson et al. (JCP 1992)

Test Case # 2: Global steady
state nonlinear zonal
geostrophic flow
Convergence rates are expected
to be as in theory. 4th order
tensor HV is used.
Test Case # 5: Zonal flow
over a mountain
An analytic solution does not
exists. Errors are obtained from a
hi-res solution. Theoretical
convergence rates are not
expected, vorticity field is
examined for oscillations. Tensor
HV of order 3.2.

Figure: A uniform mesh



Meshes for SW Tests
Presence of a refinement should not affect global errors. In the
refined region, local scales are expected to be resolved.

Figure: Meshes with 3o , 1.5o , 0.75o resolutions almost everywhere

A sequence of uniform 3o , 1.5o , 0.75o , etc. simulations is
compared to the sequence of meshes from above.



Global Errors, TC2 and TC5
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Test Case 2: All convergence rates are of 4th order. Global errors
are not affected by refinements.
Test Case 5: Global errors for refined meshes demonstrate the
same behavior as for uniform meshes, plus, errors are sligtly
improved due to the location of the mountain.



Performance of TC2, Contour Plots for Errors

Uniform mesh

A highly distorted mesh with refinement

A less distorted mesh with refinement

A highly distorted grid, 6-valence nodes

are common.

A low-connectivity mesh with very few

(and avoidable) 6-valence nodes. See

SQuadGen,

http://climate.ucdavis.edu/squadgen.php

.



Performance of TC5

Uniform mesh, error plot

A mesh with refinement, error plot

Grid

Vorticity field (smooth!)



Topography Smoothing

hnew = hold + ν(∇ · V∇)(hold)


