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Time-stepping method for PDEs that exhibit highly oscillatory time

scales

a) Motivation and background

b) Brief recap of asymptotic parallel-in-time method
Key technical component: applying the exponential et (L* = —L)

a) Standard methods and their limitations
b) New parallel-in-time method

c) Examples on 2D shallow water equations with
spectral element discretization
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Motivation for time parallelism

o Future trend: more processors available than can be efficiently
used by spatial parallelization alone

@ Once gains from spatial refinement are saturated, higher
processor counts will not increase speed

@ For problems with fast temporal oscillations, standard methods
generally require small time steps

@ Time-stepping constraints (small time steps, lack of time
parallelization) represent a fundamental bottleneck
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Model equations

@ Focus on PDEs of the form

d
M e = N (u)+ Du,
at
where L* = —L; L has pure imaginary eigenvalues

@ Includes the primitive equations, Boussinesq equations, etc.
o &£ 1L results in rapid time oscillations (think of e/®t/€)

@ Generally, even implicit and linearly exact methods require
At = 0 (g) (exception: ||Lul| < 1)
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Asymptotic parallel-in-time method

@ Take many big time steps nAT, n=1,2,...,N on an
asymptotic approximation (AT > ¢)

o Refine the solution in parallel on [nAT,(n+1) AT] using
small time steps At on the full equation

Figure 1 :  Schematic of parallel-in-time algorithm
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Applying functions of a skew-Hermitian operator

Applying the operator exponential

@ Asymptotic parallel-in-time method extends to general
domains if e‘ug can be applied efficiently (here L* = —L)

o Developed a method for applying eftug (with Gunnar
Martinnson and Beth Wingate)
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Applying functions of a skew-Hermitian operator

The exponential of a Skew-Hermitian matrix

e From eigenvalue decomposition L = U (iQ2) U*,

elmt o ... 0
0 elout 0
etL —U U*
(E) O eia.)Nt

o Approximation Ry (ix) of e yields approximation of ett,

o~ Ru(t], = o~ R o)
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Applying functions of a skew-Hermitian operator

Standard methods for operator exponential

@ Standard methods build polyomial or rational approximations
Ry (tL) to ett iteratively

o Forward Euler: Ry (tL)ug = (AtL+ 1) ug, t = MAt
o Backward Euler: Ry (tL)ug = (—AtL+1)"Mug, t = MAt

@ Other common approaches: Krylov methods, scaling and
squaring, Chebyshev polynomials, etc.

@ All of these methods rely on polynomial or rational
approximations that are inherently serial
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Applying functions of a skew-Hermitian operator

Optimal rational approximations for exponential

Construct (near) optimal rational approximation, Ry (ix), to
e™ on the interval —t|oy| < x < t|opy| with € error

o Leads to approximation of etl,
L & 1
e ug— Y am(tL—am) " uo §8||U0||2+2HPwM+1/tU0—U0H2-

The inverses (tL— Ocm)_1 ug can be applied in parallel

Near optimality even when t|@y| > 1; can parallelize over
many characteristic wavelengths
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Applying functions of a skew-Hermitian operator

Rational approximations, continued

e Rational approximation Ry (ix) has (near) optimally small
error in the L norm (with Beylkin et al, (2013))

@ This results in high efficiency relative to standard methods

@ The same poles (and inverses) for etfug can be used to apply
eStug forall 0<s<t

o Can apply et! with M < |tawy| terms if there is a priori
knowledge of spectral gaps

@ Also works for general functions f (tL) (e.g. exponential
integrators, filters, etc.)
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Applying functions of a skew-Hermitian operator
Applying the inverse

@ Need to apply (tL— Ocm)_1 ug; typically reduces to an elliptic
solve in one variable

@ For e.g. RSW equations (with constant Coriolis term f), can
be reduced to applying (A — (02, + £2) /cz)_l, 2 =gH
@ Since the shift ¢, is complex-valued, multigrid should efficient

@ Take another approach: precompute an efficient direct solver
(Martinsson, 2012)
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Applying functions of a skew-Hermitian operator
Direct solver

Spatial discretization uses the spectral element method

Direct solver related to Nested Dissection, i.e. “Gaussian
elimination for sparse matrices”

In 2D, can apply (tL— om) L ug in @ (Nlog(N)) operations

In 2D experiments, time for applying (tL — (Jcm)_1 is4—5
times more expensive than applying L

In theory, can be accelerated to &' (V) operations in 2D and 3D
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Applying functions of a skew-Hermitian operator

Flow of direct solver

Figure 2 : Interior variables are eliminated and boxes merged (top to
bottom, left to right)
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Applying functions of a skew-Hermitian operator

Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are
pre-computed hierarchically

T
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Applying functions of a skew-Hermitian operator

Eliminating variables hierarchically

@ Eliminate internal variables (blue points) by using continuity of
the normal derivative

@ “Merge”’ DtN matrices of neighboring boxes €, and 2, to get
DtN matrix for parent box Q

R TN S SR A
R T
AT v vrwer T
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Applying functions of a skew-Hermitian operator
Numerical expample for matrix exponential

@ Apply to 2D shallow water equations on [0,1] x [0, 1]

@ Test e”tLuo with t =1.5, n=1,...,10; compare against RK4
and the use of Chebyshev polynomials

@ 6 x 6 =36 elements, with 16 x 16 quadrature nodes per
element (same for all three methods)

o Use 379 inverses (tL— otm) * for Ry (tL) ug

@ Similar relative speeds obtained with 12 x 12 = 144 elements,
with 16 x 16 quadrature nodes per element
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Applying functions of a skew-Hermitian operator

Numerical experiment, continued

Figure 3 : (a) Errors, Hu(nt) —e”tLu()Hw, 1< n <10 from three
methods (a) Timings for three methods
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Applying functions of a skew-Hermitian operator

Numerical experiment: long time integrator

Figure 4 :  Errors, Hu(nt) — e”tLuon, t=1.5and 1 < n <300 using
(near) optimal rational approximations
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Applying functions of a skew-Hermitian operator

Summary

o New method for applying operator exponential ett

@ Is close to optimal among all rational or polynomial
approximations

@ Can be parallelized over as many characteristic wavelengths as
resources permit

@ Can take advantage of known scale separation between fast
and slow waves

o Generalizes to (near) optimal rational approximations of f (tL)
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Applying functions of a skew-Hermitian operator

Optimal approximations of operator exponential

@ For skew-Hermitian operator .Z,

e“ug— Y. am (1L — ) uo|| <e|luolly+2]|Pauo— uoll,
m=—M 2

where P denotes projection associated with eigenvalues less
than or equal to A.

@ Spatial discretization L of £ may not be skew-Hermitian, but
above bound leads to € accuracy (up to spatial discretization)
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Applying functions of a skew-Hermitian operator

Notation for parallel-in-time algorithm

e Write U, =u(nAT)

o Let a7 (ug) and @A 1 (ug) denote results of evolving the full
equation and the asymptotic equation by a time step AT

e SoU,=0¢a7(Us_1) and

19aT (Un) =@a7 (Un)| = € (¢).
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Applying functions of a skew-Hermitian operator
Parallel in time algorithm

@ Use a variation of the so-called parareal method

o Rewrite U, = @oaT1(Up-1) as

Uy =@a7(Un-1)+(9a7(Un) = @a7 (Un)).

o Solve iteratively: if UK~ @a7(U,_1) approximation at
iteration k, then more accurate approx. UX*1 given by

UKt =Gar (Uﬁjll)"‘((PAT (Uﬁ> —@aT (Uﬁ))7 n=1,...,N.

o At level k+1, expensive pa7 (U%) can be computed in
parallel using small time steps At << AT on time intervals
[nAT,(n+1)AT].
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Applying functions of a skew-Hermitian operator
Shallow water equations

The 1D shallow water equations:

dv 1/ om), ov_ 9w
ot 2T 0% ) T ox TR oxe
v 1 vy 2*vy

ot Tt TG THGa

on 1dwvi 9 _d'

9t Teax Tox(m)=nga,
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Applying functions of a skew-Hermitian operator
Asymptotic solution

@ The solution has a slowly varying asymptotic approximation
(Majda et al., 1998):

u(t) = e HOG(t) + 0 (e),

where .
7: = N(u)+ Du, 6(0) = uo.

Here e.g.

N((t) = lim 71_/0TeSLN<e_SLu(t)> ds.

T —oo

e Since dfu= 0 (1) for all p, can take large time steps AT > ¢
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Applying functions of a skew-Hermitian operator

Computing the asymptotic approximation numerically

@ Use a variation of HMM (E and Engquist, 2003) to compute
the asymptotic approximation on the fly:

N(@(t)) = lim ;_/(;TeSLN<e_SLu(t)> ds

T —oo
M
~ % p (3) elen/ L (& (on/ ) (1))
m=1 0

@ M is (essentially) independent of €
@ The time average can be computed in parallel

@ Subtle point: local time average yields accuracy even when

e=0(1)
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Applying functions of a skew-Hermitian operator
Intuition behind HMM

e Expand u(x,t) in basis of eigenvectors uy (x) of &
(corresponding to eigenvalues i®y), so

e Zu(x,t) = ) e % (H)ug (x).
k
@ Then can (in theory) expand nonlinear term

Ly (e‘s‘gu(t)> = ;eil"sﬂ/n(u(t))v

where iA, is some linear combinations of the eigenvalues iy

@ Therefore,

lim ;/OTesf,/V (e—sfu(t)) ds:lnzzto,/i/,,(u(t)).

T —oo
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Applying functions of a skew-Hermitian operator
Intuition behind HMM

e Want to choose Ty and p(s) such that

To s\ . B
;0/0 p <7_()>e$ﬂ(e gu(t))ds:
XA () [ eminep (s) e~
Y () =

An=0

lim 1/0Tes‘$./1/ <e75"gu(t)> ds.

T —eo

o Therefore, need
1
/ e'To*sp (s)ds ~ 0, if A, #0.
0

@ Repeated integration by parts shows that above integral is
smaller than T, ™ for any m
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Applying functions of a skew-Hermitian operator

Flow of direct solver

Figure 5 : Interior variables are eliminated and boxes merged (top to
bottom, left to right)
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Applying functions of a skew-Hermitian operator

Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are
pre-computed hierarchically

T
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Applying functions of a skew-Hermitian operator

Eliminating variables hierarchically

@ Eliminate internal variables (blue points) by using continuity of
the normal derivative

@ “Merge”’ DtN matrices of neighboring boxes €, and 2, to get
DtN matrix for parent box Q

R TN S SR A
R T
AT v vrwer T
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2D shallow water equations

Solve 2D shallow water equations,

us 0 f 0 u
Vi = —f 0 8y v
Nt dx dy 0 n
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