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Applying functions of a skew-Hermitian operator

Outline

Time-stepping method for PDEs that exhibit highly oscillatory time
scales

a) Motivation and background
b) Brief recap of asymptotic parallel-in-time method

Key technical component: applying the exponential etL (L∗ =−L)
a) Standard methods and their limitations
b) New parallel-in-time method
c) Examples on 2D shallow water equations with

spectral element discretization
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Motivation for time parallelism

Future trend: more processors available than can be efficiently
used by spatial parallelization alone
Once gains from spatial refinement are saturated, higher
processor counts will not increase speed
For problems with fast temporal oscillations, standard methods
generally require small time steps
Time-stepping constraints (small time steps, lack of time
parallelization) represent a fundamental bottleneck
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Model equations

Focus on PDEs of the form

∂u
∂ t

+ ε
−1Lu = N (u) +Du,

where L∗ =−L; L has pure imaginary eigenvalues
Includes the primitive equations, Boussinesq equations, etc.
ε−1L results in rapid time oscillations (think of e iωt/ε)
Generally, even implicit and linearly exact methods require
∆t = O (ε) (exception: ‖Lu‖� 1)
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Asymptotic parallel-in-time method

Take many big time steps n∆T , n = 1,2, . . . ,N on an
asymptotic approximation (∆T � ε)
Refine the solution in parallel on [n∆T ,(n+1)∆T ] using
small time steps ∆t on the full equation

Figure 1 : Schematic of parallel-in-time algorithm
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Applying the operator exponential

Asymptotic parallel-in-time method extends to general
domains if etLu0 can be applied efficiently (here L∗ =−L)
Developed a method for applying etLu0 (with Gunnar
Martinnson and Beth Wingate)
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The exponential of a Skew-Hermitian matrix

From eigenvalue decomposition L = U (iΩ)U∗,

etL = U


e iω1t 0 · · · 0
0 e iω1t · · · 0
...

...
. . .

...
0 0 · · · e iωN t

U∗

Approximation RM (ix) of e ix yields approximation of etL,∥∥∥etL−RM (tL)
∥∥∥

2
= max

1≤k≤N

∣∣e iωk t −RM (iωk)
∣∣
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Standard methods for operator exponential

Standard methods build polyomial or rational approximations
RM (tL) to etL iteratively
Forward Euler: RM (tL)u0 = (∆tL+ I )M u0, t = M∆t
Backward Euler: RM (tL)u0 = (−∆tL+ I )−M u0, t = M∆t
Other common approaches: Krylov methods, scaling and
squaring, Chebyshev polynomials, etc.
All of these methods rely on polynomial or rational
approximations that are inherently serial
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Optimal rational approximations for exponential

Construct (near) optimal rational approximation, RM (ix), to
e ix on the interval −t |ωN | ≤ x ≤ t |ωN | with ε error
Leads to approximation of etL,∥∥∥∥∥etLu0−

M

∑
m=1

am (tL−αm)−1 u0

∥∥∥∥∥
2

≤ ε ‖u0‖2 +2
∥∥PωM+1/tu0−u0

∥∥
2 .

The inverses (tL−αm)−1 u0 can be applied in parallel
Near optimality even when t |ωN | � 1; can parallelize over
many characteristic wavelengths
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Rational approximations, continued

Rational approximation RM (ix) has (near) optimally small
error in the L∞ norm (with Beylkin et al, (2013))
This results in high efficiency relative to standard methods
The same poles (and inverses) for etLu0 can be used to apply
esLu0 for all 0≤ s ≤ t
Can apply etL with M � |tωN | terms if there is a priori
knowledge of spectral gaps
Also works for general functions f (tL) (e.g. exponential
integrators, filters, etc.)
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Applying the inverse

Need to apply (tL−αm)−1 u0; typically reduces to an elliptic
solve in one variable
For e.g. RSW equations (with constant Coriolis term f ), can
be reduced to applying

(
∆−

(
α2

m + f 2)/c2)−1, c2 = gH
Since the shift αm is complex-valued, multigrid should efficient
Take another approach: precompute an efficient direct solver
(Martinsson, 2012)
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Direct solver

Spatial discretization uses the spectral element method
Direct solver related to Nested Dissection, i.e. “Gaussian
elimination for sparse matrices”
In 2D, can apply (tL−αm)−1 u0 in O (N log (N)) operations
In 2D experiments, time for applying (tL−αm)−1 is 4−5
times more expensive than applying L
In theory, can be accelerated to O (N) operations in 2D and 3D
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Flow of direct solver

Figure 2 : Interior variables are eliminated and boxes merged (top to
bottom, left to right)
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Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are
pre-computed hierarchically

W Μ
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Eliminating variables hierarchically

1 Eliminate internal variables (blue points) by using continuity of
the normal derivative

2 “Merge” DtN matrices of neighboring boxes Ωµ and Ωλ to get
DtN matrix for parent box Ωλ

W Μ WΝ WΛ
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Numerical expample for matrix exponential

Apply to 2D shallow water equations on [0,1]× [0,1]

Test entLu0 with t = 1.5, n = 1, . . . ,10; compare against RK4
and the use of Chebyshev polynomials
6×6 = 36 elements, with 16×16 quadrature nodes per
element (same for all three methods)
Use 379 inverses (tL−αm)−1 for RM (tL)u0

Similar relative speeds obtained with 12×12 = 144 elements,
with 16×16 quadrature nodes per element
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Numerical experiment, continued

Figure 3 : (a) Errors,
∥∥u(nt)− entLu0

∥∥
∞
, 1≤ n ≤ 10 from three

methods (a) Timings for three methods
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Numerical experiment: long time integrator

Figure 4 : Errors,
∥∥u(nt)− entLu0

∥∥
∞
, t = 1.5 and 1≤ n ≤ 300 using

(near) optimal rational approximations
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Summary

New method for applying operator exponential etL

Is close to optimal among all rational or polynomial
approximations
Can be parallelized over as many characteristic wavelengths as
resources permit
Can take advantage of known scale separation between fast
and slow waves
Generalizes to (near) optimal rational approximations of f (tL)

Terry Haut and Beth Wingate and Gunnar Martinnson



Applying functions of a skew-Hermitian operator

Optimal approximations of operator exponential

For skew-Hermitian operator L ,∥∥∥∥∥eτL u0−
M

∑
m=−M

am (τL −αm)−1 u0

∥∥∥∥∥
2

≤ ε ‖u0‖2 +2‖PΛu0−u0‖ ,

where PΛ denotes projection associated with eigenvalues less
than or equal to Λ.

Spatial discretization L of L may not be skew-Hermitian, but
above bound leads to ε accuracy (up to spatial discretization)
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Notation for parallel-in-time algorithm

Write Un = u(n∆T )

Let ϕ∆T (u0) and ϕ∆T (u0) denote results of evolving the full
equation and the asymptotic equation by a time step ∆T
So Un = ϕ∆T (Un−1) and

‖ϕ∆T (Un)−ϕ∆T (Un)‖= O (ε) .
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Parallel in time algorithm

Use a variation of the so-called parareal method
Rewrite Un = ϕ∆T (Un−1) as

Un = ϕ∆T (Un−1) + (ϕ∆T (Un)−ϕ∆T (Un)) .

Solve iteratively: if Uk
n ≈ ϕ∆T (Un−1) approximation at

iteration k , then more accurate approx. Uk+1
n given by

Uk+1
n = ϕ∆T

(
Uk+1

n−1

)
+
(

ϕ∆T

(
Uk

n

)
−ϕ∆T

(
Uk

n

))
, n = 1, . . . ,N.

At level k +1, expensive ϕ∆T
(
Uk

n
)
can be computed in

parallel using small time steps ∆t�∆T on time intervals
[n∆T ,(n+1)∆T ].
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Shallow water equations

The 1D shallow water equations:

∂v1

∂ t
+

1
ε

(
−v2 +

∂η

∂x

)
+ v1

∂v1

∂x
= µ

∂ 4v1

∂x4 ,

∂v2

∂ t
+

1
ε
v1 + v1

∂v2

∂x
= µ

∂ 4v2

∂x4 ,

∂η

∂ t
+

1
ε

∂v1

∂x
+

∂

∂x
(hv1) = µ

∂ 4η

∂x4 ,
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Asymptotic solution

The solution has a slowly varying asymptotic approximation
(Majda et al., 1998):

u(t) = e−(t/ε)Lu(t) +O (ε) ,

where
∂u
∂ t

= N (u) +Du, u(0) = u0.

Here e.g.

N (u(t)) = lim
T→∞

1
T

∫ T

0
esLN

(
e−sLu(t)

)
ds.

Since ∂
p
t u = O (1) for all p, can take large time steps ∆T � ε
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Computing the asymptotic approximation numerically

Use a variation of HMM (E and Engquist, 2003) to compute
the asymptotic approximation on the fly:

N (u(t)) = lim
T→∞

1
T

∫ T

0
esLN

(
e−sLu(t)

)
ds

≈ 1
M

M

∑
m=1

ρ

(
sm

εT0

)
e(sm/ε)LN

(
e−(sm/ε)Lu(t)

)
M is (essentially) independent of ε

The time average can be computed in parallel
Subtle point: local time average yields accuracy even when
ε = O (1)
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Intuition behind HMM

Expand u(x , t) in basis of eigenvectors uk (x) of L
(corresponding to eigenvalues iωk), so

e−sL u(x , t) = ∑
k
e−iωk sck (t)uk (x) .

Then can (in theory) expand nonlinear term

esL N
(
e−sL u(t)

)
= ∑

λn

e iλnsNn (u(t)) ,

where iλn is some linear combinations of the eigenvalues iωk

Therefore,

lim
T→∞

1
T

∫ T

0
esL N

(
e−sL u(t)

)
ds = ∑

λn=0
Nn (u(t)) .
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Intuition behind HMM

Want to choose T0 and ρ (s) such that

1
T0

∫ T0

0
ρ

(
s
T0

)
esL N

(
e−sL u(t)

)
ds =

∑
λn

Nn (u(t))
∫ 1

0
e iT0λns

ρ (s)ds ≈

∑
λn=0

Nn (u(t)) =

lim
T→∞

1
T

∫ T

0
esL N

(
e−sL u(t)

)
ds.

Therefore, need∫ 1

0
e iT0λns

ρ (s)ds ≈ 0, if λn 6= 0.

Repeated integration by parts shows that above integral is
smaller than T−m

0 for any m
Terry Haut and Beth Wingate and Gunnar Martinnson
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Flow of direct solver

Figure 5 : Interior variables are eliminated and boxes merged (top to
bottom, left to right)
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Dirichlet-to-Neumann operator

Uses Dirichlet-to-Neumann (DtN) matrices, which are
pre-computed hierarchically

W Μ
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Eliminating variables hierarchically

1 Eliminate internal variables (blue points) by using continuity of
the normal derivative

2 “Merge” DtN matrices of neighboring boxes Ωµ and Ωλ to get
DtN matrix for parent box Ωλ

W Μ WΝ WΛ
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Appendix

2D shallow water equations

Solve 2D shallow water equations, ut
vt
ηt

=

 0 f ∂x
−f 0 ∂y
∂x ∂y 0

 u
v
η

 .
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