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Introduction and LVC formulation

What and why

Lagrangian vertical coordinate (LVC)

@ Moves with the fluid.

o Keeps track of the height of material surfaces (additional
prognostic equation for z (r)).

Why LVC?

o No need to evaluate vertical departure point.

e Elimination of vertical advection terms (and associated errors)
from the governing equations and numerical model.

@ Reduction of horizontal advection errors (if Lagrangian
surfaces lie close to isentropes), better Lagrangian
conservation properties.
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Limitations and further questions

Figure 7: Showing how strong vertical winds can cause folding
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Figure 8: Showing a surface folding into itself
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Figure 9: Showing a vertical shear causing folding

Bending and folding of
Lagrangian surfaces over
time. [Ken06]

Difficulty of handling the
bottom boundary — use
f(0,z)?

Reduced vertical resolution
in near-neutral
stratification.

Dynamics - physics
coupling.
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Implementation of LVC in ENDGame

@ Stability and performance of LVC model for nonhydrostatic
compressible Euler equations.

@ Transfer of model fields from old to new levels
o Re-initialization of Lagrangian surfaces - locations (related to
isentropes?), how often?
o Remapping - which method, what quantities (energy, entropy)?
o Effect of remapping on conservation (mass, momentum,
energy) and stability of the model.

© Comparison with the current height-based coordinate version
of ENDGame.
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Equations

Du
——Wv=0 1
e (1)
: : Do

No wvertical advection: Dr +0oVs-v=0 (2)

Do
D =0 (3)

i ‘ Dz
Additional eqn. for the height of LS: =" (4)

M
V=-2Qxu—0V <0) —®Vind

o & - geopotential; 0 = pa2 85 - mass (affected by changes in
layer depth).

o M=c, T+ ® = cpl10 4 d - Montgomery potential in
Helmholtz solver (I in height-based ENDGame).
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LVC ENDGame formulation

@ LVC coordinate system: (£1,£2,&3) = (A, ¢, s), see [SWO3|.
e s € [0,1], fixed: 5 =0 (s =n in HB ENDGame).
e Variables F = (r,u,v,w,0,0).

@ Finite-difference: Lat-lon C-grid in horizontal, Lorenz grid in
vertical (Charney-Philips in the height-based (HB) model).

Semi-Implicit, Semi-Lagrangian (SISL) scheme, a+ 5 =1

XHH — X = At [axul™ + pxu” (Xp)] (5)
Fatl — FA = At [aeN (F4T) + BN (FR)] - (6)

@ r = a+ z needs to be recalculated, as well as r depending
terms in V -, V, Coriolis, cell areas and volumes.
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Grid and solving

@ Centered differences.

e Fixed BC: z(1,i,j) =0,
zZ, W Z(N+17ivj):ZTOP-
g| ® o’ls’ iy | e No flux: w(1,/,j) =0,
w(N+1,i,j)=0.

PV v PV

g " Py Iterative solving:
5 o FUHD) — F() 4 Fr
1=y W=0 o lterations for
F=( v w,oe),
@ Reference state
1,%,0,8,M, PV F*=F(r),
" @ Helmholtz problem for M’

= backsubstitution for F’
120, w=0 — solutions for F.
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Diagnostics: Mass, Energy, Entropy and PV

Total mass (height-based — LVC):

M= /pdV—a /pgrcosmd)\dmds—a /aAds (7)
v

Total energy:
£ = az/vaEAds, E=c¢T+®+05(u>+v?+w?) (8)
Total entropy:
S = cpa2/valn0Ads (9)
Potential vorticity:

VO-¢C VO (V Xu+29)
p p

PV = (10)
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Remapping strategies and methods

Strategies (all not including velocity

@ M and &: remap o & orEx — calculate E; & 6.

@ M and S: remap o & oy Inf, — calculate 6.

e M and 0y: remap o, 6 = 0y + Onp, interpolate Ony, (0)g —
Oy & 0.

@ Piecewise parabolic method (PPM, [WAOQS]).
e Parabolic spline method (PSM, [ZWS06, ZWSO07]).

o Edge values estimated from cell averages: PPM h3, h4, ih4
(implicit, otherwise explicit).

@ Boundary conditions: decreasing degree of P, & one-sided
(same degree of P,, evaluate at different edges).
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Test cases

Model parameters and initial conditions (1C)

Test cases:
e Solid body rotation (T =270 K; u = ugr cos ¢/ a,
up = 40 m/s): breaks with energy-conserving Coriolis
discretization from the HB ENDGame, runs normally with
simple discretization of Coriolis.

e Baroclinic wave ([JW06]): To =288 K, I = 0.005K/m,
up =35m/s, v (N ¢,s) = upexp [— (r/R)z}.

Parameters:

@ Horizontal (p=7): nx =2P =128; ny = 2(p—1) — 64,
nyp = ny +1 =65 for v.

@ Vertical: zrop = 32km, nz =32 (u, v, o, ) or 33 (z, w); Uniform
(Az =1 km) or quadratically stretched (Az = 350 m to 1.2 km)
grid.

@ J, =1, Centered scheme (« = 8 = 0.5); lterations: ng, = 4,
nin =1 (T4x1); noye = 2, nip = 2 (T2x2).



Test cases

LVC's bad and good

Table 1: BW case breaking times in days (p =7, nx = 128, ny = 64,
nz = 32, uniform grid, npass = 1 in Helmholtz solver)

Case \ dt  1200s (20min)  1800s (30min)  2400s (40min)  3600s (60min)

T4x1 30.29 29.44 28.94 28.50
T2x2 29.97 29.27 28.50 26.67
Tax1, u 7.11 7.27 6.97 6.75
T2x2, ' 6.89 6.88 6.69 6.46

Table 2: Comparison of runtimes in minutes (dt = 2400s, nsteps = 100,
nz = 32, uniform grid, npass = 1 in Helmholtz solver) for height-based
and LVC ENDGame (without and with remapping in every time step).

Nout X Nin  p  Height-based LvC LVC remap
T4x1 7 27:35(99.8%) 10:29 (99.8%) 11:06 (99.8%)
6 6:36 (99.8%) 2:34 (99.7%) 2:40 (99.8%)

T2x2 7 15:13 (99.8%) 7:22 (98.6%)  7:52 (99.8%)
6  3:46 (99.7%)  1:46 (99.7%)  1:54 (99.7%)




Test cases

BW test case, ' run: LVC z and o, step 250

Zath=1000and 6.3444 days

1 2 4 5
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Figure 1. LVC ENDGame, z surface (left), o surface (right): step 250,
uniform grid, T4x1 run, At = 2400, two steps before breaking.



Test cases

BW test case, v/ run: LVC and height—based p, step 250

RHO at h =1500 and 6.9444 days RHOath= 150and 6k days
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Figure 2: p surface (LVC left, HB right): step 250, uniform grid, T4x1

run, At = 2400 s, two steps before breaking.




Test cases

BW test case, ¢ run: LVC and height—based u, step 250

Uath=1500and 6. 3444 days Uath=1500 and 6.9444 days

0
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Figure 3: u surface (LVC left, HB right): step 250, uniform grid, T4x1
run, At = 2400s, two steps before breaking.



Test cases

BW test case, ¢ run: LVC and height—based v, step 250

Vath=1500and 83444 days Vath=1500and 6444 days
T

3 § §
LN LoN

Figure 4: v surface (LVC left, HB right): step 250, uniform grid, T4x1
run, At = 2400s, two steps before breaking.



Test cases

BW test case, ¢ run: LVC and height—based 6, step 250

THETA ath= 1500 and 6.3444 days THETA ath = 1500 and 6.9444 days

1

'LON
Figure 5: 6 surface (LVC left, HB right): step 250, uniform grid, T4x1
run, At = 2400s, two steps before breaking.




Test cases

BW test case, ¢ run: LVC and height-based PV, step 250

PVabs at K'=2and 6.3444 days 40 PVabs at K =2and 6,444 days 0
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Figure 6: PV surface (LVC left, HB right): step 250, uniform grid, T4x1
run, At = 2400s, two steps before breaking.
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Test cases

Application of remapping

@ Remapping done column by column, every n timesteps, to
initial z levels, (cubic) interpolation for velocity.

@ Sum of cell averages (o, okEk, etc.) preserved before and
after remapping.

@ Different edge values estimators do not really make difference;
more often remapping gives better results.

Does not prevent model breaking, just delays it.
Table 3: BW remapping case breaking times in days (p =7, nx = 128,

ny = 64, nz = 32, dt = 1200, uniform grid, npass = 1 in Helmholtz
solver), remapping every step.

Case \ Remap Noremap Energy Entropy Hydtheta
T4x1 30.29 39.88 36.81 27.25
T4x1, 7.11 10.88 11.06 10.72




Test cases

BW test case, v’ remap run,: LVC o, step 250

diffSIGMA at h = 1500 and 6.9444 days SIGMA at h =1500 and 6.9444 days ot
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Figure 7. LVC ENDGame, o surface after (right) energy remapping, and
differences (left): step 250, uniform grid, T4x1 run, At = 2400s.



Test cases

BW test case, v’ remap run: LVC u, step 250

diffU at h = 1500 and 6.9444 days U at h=1500 and 6.9444 days
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Figure 8: u surface after (right) energy remapping, and differences (left):
step 250, uniform grid, T4x1 run, At = 2400s.
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Test cases

BW test case, v’ remap run: LVC v, step 250

diffV at h = 1500 and 6.9444 days Vat h=1500 and 6.9444 days
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Figure 9: v surface after (right) energy remapping, and differences (left):
step 250, uniform grid, T4x1 run, At = 2400s.



Test cases

BW test case, v’ remap run: LVC 6, step 250

diffTHETA at h =1500 and 6.9444 days THETA at h = 1500 and 6.9444 days
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Figure 10: 6 surface after (right) energy remapping, and differences
(left): step 250, uniform grid, T4x1 run, At = 2400s.
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Summary

Summary

@ Benefits of LVC:

o No vertical advection calculation, vertical component of
departure point predicted = significantly reduced running time
in comparison with HB ENDGame.

o Cost of remapping (so far) not so significant.

@ 3D LVC able to maintain SBR with simple Coriolis
discretization; breaks for BW case even with the remapping.

@ Issues of LVC:
e Stability for BW case - in formulation, remapping or both?
o Choice of optimal target levels for remapping (currently to
initial levels).
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