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What and why

Lagrangian vertical coordinate (LVC)

Moves with the fluid.

Keeps track of the height of material surfaces (additional
prognostic equation for z (r)).

Why LVC?

No need to evaluate vertical departure point.

Elimination of vertical advection terms (and associated errors)
from the governing equations and numerical model.

Reduction of horizontal advection errors (if Lagrangian
surfaces lie close to isentropes), better Lagrangian
conservation properties.



Introduction and LVC formulation Test cases Summary

Limitations and further questions

Bending and folding of
Lagrangian surfaces over
time. [Ken06]

Difficulty of handling the
bottom boundary – use
f (θ, z)?

Reduced vertical resolution
in near-neutral
stratification.

Dynamics - physics
coupling.
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Implementation of LVC in ENDGame

Questions

1 Stability and performance of LVC model for nonhydrostatic
compressible Euler equations.

2 Transfer of model fields from old to new levels

Re-initialization of Lagrangian surfaces - locations (related to
isentropes?), how often?
Remapping - which method, what quantities (energy, entropy)?
Effect of remapping on conservation (mass, momentum,
energy) and stability of the model.

3 Comparison with the current height-based coordinate version
of ENDGame.
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Equations

Du

Dt
−Ψ = 0 (1)

No vertical advection:
Dσ

Dt
+ σ∇s · v = 0 (2)

Dθ

Dt
= 0 (3)

Additional eqn. for the height of LS:
Dz

Dt
= w (4)

Ψ = −2Ω× u− θ∇
(
M

θ

)
− Φ∇ ln θ

Φ - geopotential; σ = ρ r2

a2
∂r
∂s - mass (affected by changes in

layer depth).

M = cpT + Φ = cpΠθ + Φ - Montgomery potential in
Helmholtz solver (Π in height-based ENDGame).
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LVC ENDGame formulation

LVC coordinate system: (ξ1, ξ2, ξ3) = (λ, φ, s), see [SW03].

s ∈ [0, 1], fixed: ṡ = 0 (s = η in HB ENDGame).

Variables F = (r , u, v ,w , θ, σ).

Finite-difference: Lat-lon C-grid in horizontal, Lorenz grid in
vertical (Charney-Philips in the height-based (HB) model).

Semi-Implicit, Semi-Lagrangian (SISL) scheme, α + β = 1

Xn+1
A − Xn

D = ∆t
[
αXun+1

A + βXun (XD)
]
, (5)

F n+1
A − F n

D = ∆t
[
αFN

(
F n+1
A

)
+ βFN (F n

D)
]
. (6)

r = a + z needs to be recalculated, as well as r depending
terms in ∇ · , ∇, Coriolis, cell areas and volumes.
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Grid and solving

Centered differences.

Fixed BC: z (1, i , j) = 0,
z (N + 1, i , j) = zTOP .

No flux: w (1, i , j) = 0,
w (N + 1, i , j) = 0.

Iterative solving:

F (l+1) = F (l) + F ′,

Iterations for
F = (r ′, u′, v ′,w ′, σ′, θ′),

Reference state
F ∗ = F (r),

Helmholtz problem for M ′

⇒ backsubstitution for F ′

→ solutions for F .
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Diagnostics: Mass, Energy, Entropy and PV

Total mass (height-based → LVC):

M =

∫
V
ρdV = a2

∫
V
ρ
r2

a2
∂r

∂s
cosφdλdφds = a2

∫
V
σAds (7)

Total energy:

E = a2
∫
V
σEAds, E = cvT + Φ + 0.5

(
u2 + v2 + w2

)
(8)

Total entropy:

S = cpa
2

∫
V
σ ln θAds (9)

Potential vorticity:

PV =
∇θ · ζ
ρ

=
∇θ · (∇× u + 2Ω)

ρ
(10)
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Remapping strategies and methods

Strategies (all not including velocity

M and E : remap σ & σkEk → calculate Ek & θk .

M and S: remap σ & σk ln θk → calculate θk .

M and θH : remap σ, θ = θH + θNH , interpolate θNH , (σ)R →
θH & θk .

Methods

Piecewise parabolic method (PPM, [WA08]).

Parabolic spline method (PSM, [ZWS06, ZWS07]).

Edge values estimated from cell averages: PPM h3, h4, ih4
(implicit, otherwise explicit).

Boundary conditions: decreasing degree of Pn & one-sided
(same degree of Pn, evaluate at different edges).
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Model parameters and initial conditions (IC)

Test cases:

Solid body rotation (T = 270K ; u = u0r cosϕ/a,
u0 = 40m/s): breaks with energy-conserving Coriolis
discretization from the HB ENDGame, runs normally with
simple discretization of Coriolis.

Baroclinic wave ([JW06]): T0 = 288K , Γ = 0.005K/m,

u0 = 35m/s, u′ (λ, ϕ, s) = up exp
[
− (r/R)2

]
.

Parameters:

Horizontal (p = 7): nx = 2p = 128; ny = 2(p−1) = 64,
nyp = ny + 1 = 65 for v .

Vertical: zTOP = 32km, nz = 32 (u, v , σ, θ) or 33 (z , w); Uniform
(∆z = 1 km) or quadratically stretched (∆z = 350m to 1.2 km)
grid.

δv = 1, Centered scheme (α = β = 0.5); Iterations: nout = 4,
nin = 1 (T4x1); nout = 2, nin = 2 (T2x2).
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LVC’s bad and good

Table 1: BW case breaking times in days (p = 7, nx = 128, ny = 64,
nz = 32, uniform grid, npass = 1 in Helmholtz solver)

Case \ dt 1200s (20min) 1800s (30min) 2400s (40min) 3600s (60min)

T4x1 30.29 29.44 28.94 28.50
T2x2 29.97 29.27 28.50 26.67

T4x1, u′ 7.11 7.27 6.97 6.75
T2x2, u′ 6.89 6.88 6.69 6.46

Table 2: Comparison of runtimes in minutes (dt = 2400s, nsteps = 100,
nz = 32, uniform grid, npass = 1 in Helmholtz solver) for height-based
and LVC ENDGame (without and with remapping in every time step).

nout × nin p Height-based LVC LVC remap

T4x1 7 27:35 (99.8%) 10:29 (99.8%) 11:06 (99.8%)
6 6:36 (99.8%) 2:34 (99.7%) 2:40 (99.8%)

T2x2 7 15:13 (99.8%) 7:22 (98.6%) 7:52 (99.8%)
6 3:46 (99.7%) 1:46 (99.7%) 1:54 (99.7%)



Introduction and LVC formulation Test cases Summary

BW test case, u′ run: LVC z and σ, step 250

Figure 1: LVC ENDGame, z surface (left), σ surface (right): step 250,
uniform grid, T4x1 run, ∆t = 2400 s, two steps before breaking.
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BW test case, u′ run: LVC and height–based ρ, step 250

Figure 2: ρ surface (LVC left, HB right): step 250, uniform grid, T4x1
run, ∆t = 2400 s, two steps before breaking.
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BW test case, u′ run: LVC and height–based u, step 250

Figure 3: u surface (LVC left, HB right): step 250, uniform grid, T4x1
run, ∆t = 2400 s, two steps before breaking.
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BW test case, u′ run: LVC and height–based v , step 250

Figure 4: v surface (LVC left, HB right): step 250, uniform grid, T4x1
run, ∆t = 2400 s, two steps before breaking.
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BW test case, u′ run: LVC and height–based θ, step 250

Figure 5: θ surface (LVC left, HB right): step 250, uniform grid, T4x1
run, ∆t = 2400 s, two steps before breaking.
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BW test case, u′ run: LVC and height–based PV, step 250

Figure 6: PV surface (LVC left, HB right): step 250, uniform grid, T4x1
run, ∆t = 2400 s, two steps before breaking.
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Application of remapping

Remapping done column by column, every n timesteps, to
initial z levels, (cubic) interpolation for velocity.

Sum of cell averages (σ, σkEk , etc.) preserved before and
after remapping.

Different edge values estimators do not really make difference;
more often remapping gives better results.

Does not prevent model breaking, just delays it.

Table 3: BW remapping case breaking times in days (p = 7, nx = 128,
ny = 64, nz = 32, dt = 1200, uniform grid, npass = 1 in Helmholtz
solver), remapping every step.

Case \ Remap No remap Energy Entropy Hydtheta

T4x1 30.29 39.88 36.81 27.25
T4x1, u′ 7.11 10.88 11.06 10.72



Introduction and LVC formulation Test cases Summary

BW test case, u′ remap run,: LVC σ, step 250

Figure 7: LVC ENDGame, σ surface after (right) energy remapping, and
differences (left): step 250, uniform grid, T4x1 run, ∆t = 2400 s.
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BW test case, u′ remap run: LVC u, step 250

Figure 8: u surface after (right) energy remapping, and differences (left):
step 250, uniform grid, T4x1 run, ∆t = 2400 s.
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BW test case, u′ remap run: LVC v , step 250

Figure 9: v surface after (right) energy remapping, and differences (left):
step 250, uniform grid, T4x1 run, ∆t = 2400 s.
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BW test case, u′ remap run: LVC θ, step 250

Figure 10: θ surface after (right) energy remapping, and differences
(left): step 250, uniform grid, T4x1 run, ∆t = 2400 s.
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Summary

Benefits of LVC:

No vertical advection calculation, vertical component of
departure point predicted ⇒ significantly reduced running time
in comparison with HB ENDGame.
Cost of remapping (so far) not so significant.

3D LVC able to maintain SBR with simple Coriolis
discretization; breaks for BW case even with the remapping.

Issues of LVC:

Stability for BW case - in formulation, remapping or both?
Choice of optimal target levels for remapping (currently to
initial levels).
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