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Some Properties Of A “Good” Algorithm

 Accuracy
— Higher-order generally gives bigger bang for your buck
— High-order coupling of PDE terms & dimensions

* Speed
— Larger time step
— Lower cost per time step

— Scalability
» Lower MPI Overhead
» Computing scales faster than communication

* Robustness
— Limited, non-amplifying oscillations, positivity, monotonicity




What Is ADER-DT?

« ADER-DT = Abritrary DERIvatives with Differential Transforms

* ADER: (Spatial derivatives)+(the PDE itself)—> (time derivatives)
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 Temporal order of accuracy matches the spatial order
* A Differential Transform (DT) is just a Taylor Series coefficient

17 9 N-1 N-1

A )= S S0k k)

) kx'kt' axk"at"f k=0 k,=0

k. +k

O(k,.k,




DTs Make ADER Cheaper & Simpler

Burger’s Equation DT of Burger's Equation

Ok k +1)= -’Zc +11F(kx +1,k,)
+

All PDE terms are space-time polynomials (no quadrature)
Non-linearly coupled, high-order accuracy w/ no stages (scalable)
Any order of accuracy by changing just one line of code
Automatically preserves non-oscillatory properties

Easily adapted to any grid, spatial operator, or PDE set

When using WENO, only one limiting applied per time step
p-refinement happens in time as well, not only in space




The Gist of Why | Like FV and ADER-DT

* FV +ADER-DT + WENO + FCT positivity + Half-tensor

— Means a positive, limited, high-order, cheap, & large time step with
only 1 data transfer per time step

« MMFV +ADER-DT + HWENO + FCT + Half-tensor

— Same as before, same time step, and you get multi-moment




Is ADER-DT Viable For Transport?

Solid Body Rotation, 128x128 cells, using ADER-DT
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Even 7"-order can be
quite smooth

i 50852 — But you pay in accuracy

ADER-DT + WENO

offers a range of limiting

— Two tunable parameters
— Can be smooth or sharp




3-D Cartesian Euler Model: Rising Thermal

Genuinely 3-D Finite-
Volume using ADER-DT
ADER-DT is 5x, 4.5x, and
2x faster than SSP-RK4

— bt 7. & 9th.ord ADER
versus 4th-ord RK

— Using RK max stable

time step, not SSP
OpenMP + 3-D MPI

I 3d, 5t 7, & 9th-order
Volume i accuracies so far
render with L N
slice across 3'D WENO |Im|t|ng
y-axis HLLC, LLF, or Upwind flux
I @ Uses “half-tensor” for up
to 24x less cost




3-D Cartesian Euler Model: Colliding Thermals

20K perturbation
bubbles collide

Sharp discontinuities

WENO successfully
limits to provide stability

Uses “sub-cell” method
for multi-dim WENO

Larger WENO coef
causes more damping

WENO overhead only
30% to 60%

— QOverhead relatively
less for higher-order




ADER-DT + FV Scaling: 3-D Compressible Euler

« Strong scaling: 2567 cells from 1 node to 4096 nodes on Titan
* MPI+OpenMP; Fortran 90; Cray compiler; CPU-only for now
* On-node: 20% peak flops on Interlagos & Sandybridge

Only 16° cells
per node
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Why Use A Half-Tensor?

Full Tensor Half Tensor
for kt=0,N-1 for kt=0,N-1
for kz=0,N-1 for kz=0,N-1-kt
for ky=0,N-1 for ky=0,N-1-kt-kz
for kx=0,N-1 for kx=0,N-1-kt-kz-ky
for rt=0, kt for rt=0, kt
for rz=0,kz for rz=0,kz
for ry=0, ky for ry=0, ky

for rx=0, kx for rx=0, kx

* Innermost loop body executed 102x, 205x, & 319x fewer times at
5th. 7th. and 9t-order accuracies

* Space-time polynomial contains 8.9x, 11.4x, & 13.3x fewer terms
* Half-tensor make genuinely multi-dim simulation more feasible




Handling Quasi-Steady Balances

Example: Hydrostasis d,p, (¥,t)=-gp, (%.1)

Already have true pressure & density as space-time polynomials

Equate “hydrostatic pressure™ with true pressure

Diagnose “hydrostatic density” with Differential Transforms

k, +1
g

Removing hydrostasis removes vertical pressure term entirely

R, (k,.k,.k .k, )=~

P, (k,.k,. k. +1.k,)

If there’s a balance, you can recast a flux term as a source term
— Or vice versa




Portability For Accelerators

 Enough cells per node = efficient port to GPUs

» How many cells? Generally =32K, preferably many more
— Equivalent to CAM-SE, 4™-order, 64 elements per node

CPU implementation computes each operation on blocks
— Blocks of 16 (32) for double (single) precision perform best

— Must be known at compile time for vectorization to be successful

GPU implementation would just increase block size to 32K
— No re-organization of data structures needed
May be opportunity for more threading over DT procedure
— 8 nested triangular loops for a 3-D simulation
— If surface area of “front of dependence’ is large, that means threads
— Likely viable only at higher-order (7t and up, perhaps)




Implementation In Finite-Volume Framework

» Start with PDE: 9V, oF | 9G  0H _ ¢ and cell averages: 7, ,
ot dx a9y 0z "

Reconstruct spatial expansion at cell centroid: U, (x.y.z)

Perform ADER-DT to form space-time expansion:
Ui,j,k (x’y’z’t> E,j,k (x,y,z,t) Gi,j,k (x’y’z’t) Hi,j,k (X>sz’t) Si,j,k (x,y,z,t)

A

Compute space-time averages of fluxes at cell faces: 7, G,., A,

,Jj.k

Compute space-time average of source over cell body: s, ,

Apply one Riemann solve per face per time step using space-time-
averaged limits at the interface

— Any linearized Riemann solver will do: Upwind, LLF, HLLC

For general spatial operators
— Compute time-average and apply operator like normal




Why | Prefer Finite-Volume

Order of accuracy doesn't affect the time step
Multi-moment doesn't affect the time step (MMFV + HWENO)
WENO is a given: no added transfers, no load imbalance

(FV) + (ADER-DT) + ([HJWENO) + (FCT positivity) means a
positive, limited, high-order, large time step w/ only 1 transfer

Can do genuinely multi-dimensional with less work
— Half-tensor of derivatives is up to 24x smaller than full-tensor in 3D

Some Galerkin schemes are hardwired to quadrature




The 3-D High-Order FV Halo: 2-D Slice

« Shaded regions depend on halo updates (167 cells at 9"-order)
* Only 12.5% of the domain is free of halo dependence
« Won't the size of the transfers kill you at scale?

« Computation increases much
faster than communication

* Increase in work per node
outweighs increased transfer cost

« WENO improves this by adding
computation w/o communication

« Ameliorates needing to overlap
computation & communication




Is ADER-DT Viable For Transport?

Deformational Flow, 128x128 cells, using ADER-DT
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ADER-DT Verses Runge-Kutta

 Multi-stage time discretizations most common (Runge-Kutta)
— Multiple copies of the fluid state (taxing on memory)
— Multiple data transfers per time step / small effective time step
— Higher than 4™-order is difficult and expensive to obtain
— Maintaining non-oscillatory properties reduces time step even further

— WENO limiting typically applied at each stage
« ADER-DT improves upon this

— Only one copy of the fluid state is needed, more work per byte

— Only one data transfer per time step / much larger effective time step
— Any order of accuracy is as easy as changing one line of code

— Non-oscillatory properties automatically maintained, same time step
— Only one WENO procedure per large time step




