
Improving	
 Dynamical	
 Core	
 Scalability,	

Accuracy,	
 and	
 Limi:ng	
 Flexibility	
 with	
 the	

ADER-­‐DT	
 Time	
 Discre:za:on	

	

Matthew R. Norman

Scientific Computing Group
National Center for Computational Sciences

Oak Ridge National Laboratory

PDEs On The Sphere 2014

	

Some	
 Proper:es	
 Of	
 A	
 “Good”	
 Algorithm	

•  Accuracy
–  Higher-order generally gives bigger bang for your buck
–  High-order coupling of PDE terms & dimensions

•  Speed
–  Larger time step
–  Lower cost per time step
–  Scalability

•  Lower MPI Overhead
•  Computing scales faster than communication

•  Robustness
–  Limited, non-amplifying oscillations, positivity, monotonicity

What	
 Is	
 ADER-­‐DT?	

•  ADER-DT = Abritrary DERivatives with Differential Transforms
•  ADER: (Spatial derivatives)+(the PDE itself)à(time derivatives)

•  Temporal order of accuracy matches the spatial order
•  A Differential Transform (DT) is just a Taylor Series coefficient

∂q
∂t
+
∂f q()
∂x

= 0 ⇒ ∂q
∂t
= −

∂f
∂q

∂q
∂x

q x, t() = Q kx,kt() xkx t kt
kt=0

N−1

∑
kx=0

N−1

∑Q kx,kt() = 1
kx !kt !

∂kx+kyq x, t()
∂xkx∂t kt

∂2q
∂x∂t

= −
∂2 f
∂q2

∂q
∂x
#

$
%

&

'
(
2

−
∂f
∂q

∂2q
∂x2

 ⇒ ∂
2q
∂t2

= −
∂2 f
∂q2

∂q
∂t
∂q
∂x

−
∂f
∂q

∂2q
∂t∂x

DTs	
 Make	
 ADER	
 Cheaper	
 &	
 Simpler	

Burger’s Equation
∂q
∂t
+
∂f q()
∂x

= 0

f q() = q
2

2

DT of Burger’s Equation
Q kx,kt +1() = − kx +1

kt +1
F kx +1,kt()

F kx,kt() = 1
2

Q rx, rt()
rt =0

kt

∑
rx=0

kx

∑ Q kx − rx,kt − rt()

•  All PDE terms are space-time polynomials (no quadrature)
•  Non-linearly coupled, high-order accuracy w/ no stages (scalable)
•  Any order of accuracy by changing just one line of code
•  Automatically preserves non-oscillatory properties
•  Easily adapted to any grid, spatial operator, or PDE set
•  When using WENO, only one limiting applied per time step
•  p-refinement happens in time as well, not only in space

The	
 Gist	
 of	
 Why	
 I	
 Like	
 FV	
 and	
 ADER-­‐DT	

•  FV + ADER-DT + WENO + FCT positivity + Half-tensor
–  Means a positive, limited, high-order, cheap, & large time step with

only 1 data transfer per time step

•  MMFV + ADER-DT + HWENO + FCT + Half-tensor
–  Same as before, same time step, and you get multi-moment

Is	
 ADER-­‐DT	
 Viable	
 For	
 Transport?	

•  Left to Right: 3rd, 5th, 7th
•  Top panel: no limiting

•  Middle: “light WENO” &
FCT positivity

•  Bottom: “heavy WENO”
& FCT positivity

•  Even 7th-order can be
quite smooth
–  But you pay in accuracy

•  ADER-DT + WENO
offers a range of limiting
–  Two tunable parameters
–  Can be smooth or sharp

3-­‐D	
 Cartesian	
 Euler	
 Model:	
 Rising	
 Thermal	

Volume
render with
slice across

y-axis

•  Genuinely 3-D Finite-
Volume using ADER-DT

•  ADER-DT is 5x, 4.5x, and
2x faster than SSP-RK4
–  5th-, 7th-, & 9th-ord ADER

versus 4th-ord RK
–  Using RK max stable

time step, not SSP
•  OpenMP + 3-D MPI
•  3rd, 5th, 7th, & 9th-order

accuracies so far
•  3-D WENO limiting
•  HLLC, LLF, or Upwind flux
•  Uses “half-tensor” for up

to 24x less cost

3-­‐D	
 Cartesian	
 Euler	
 Model:	
 Colliding	
 Thermals	

•  20K perturbation
bubbles collide

•  Sharp discontinuities
•  WENO successfully

limits to provide stability
•  Uses “sub-cell” method

for multi-dim WENO
•  Larger WENO coef

causes more damping
•  WENO overhead only

30% to 60%
–  Overhead relatively

less for higher-order

ADER-­‐DT	
 +	
 FV	
 Scaling:	
 3-­‐D	
 Compressible	
 Euler	

•  Strong scaling: 2563 cells from 1 node to 4096 nodes on Titan
•  MPI+OpenMP; Fortran 90; Cray compiler; CPU-only for now
•  On-node: 20% peak flops on Interlagos & Sandybridge

Only 163 cells
per node

No WENO
Limiting Used

Simple 3-D
MPI decomp;

no overlapping

Why	
 Use	
 A	
 Half-­‐Tensor?	

Full	
 Tensor
for kt=0,N-1

 for kz=0,N-1

 for ky=0,N-1

 for kx=0,N-1

 for rt=0,kt

 for rz=0,kz

 for ry=0,ky

 for rx=0,kx

Half	
 Tensor	

for kt=0,N-1

 for kz=0,N-1-kt

 for ky=0,N-1-kt-kz

 for kx=0,N-1-kt-kz-ky

 for rt=0,kt

 for rz=0,kz

 for ry=0,ky

 for rx=0,kx

 •  Innermost loop body executed 102x, 205x, & 319x fewer times at
5th-, 7th-, and 9th-order accuracies

•  Space-time polynomial contains 8.9x, 11.4x, & 13.3x fewer terms
•  Half-tensor make genuinely multi-dim simulation more feasible

Handling	
 Quasi-­‐Steady	
 Balances	

•  Example: Hydrostasis
•  Already have true pressure & density as space-time polynomials
•  Equate “hydrostatic pressure” with true pressure
•  Diagnose “hydrostatic density” with Differential Transforms

•  Removing hydrostasis removes vertical pressure term entirely

•  If there’s a balance, you can recast a flux term as a source term
–  Or vice versa

∂z pH
!x, t() = −gρH

!x, t()

RH kx,ky,kz,kt() = − kz +1g PH kx,ky,kz +1,kt()

Portability	
 For	
 Accelerators	

•  Enough cells per node = efficient port to GPUs
•  How many cells? Generally ≈32K, preferably many more
–  Equivalent to CAM-SE, 4th-order, 64 elements per node

•  CPU implementation computes each operation on blocks
–  Blocks of 16 (32) for double (single) precision perform best
–  Must be known at compile time for vectorization to be successful

•  GPU implementation would just increase block size to 32K
–  No re-organization of data structures needed

•  May be opportunity for more threading over DT procedure
–  8 nested triangular loops for a 3-D simulation
–  If surface area of “front of dependence” is large, that means threads
–  Likely viable only at higher-order (7th and up, perhaps)

Implementa:on	
 In	
 Finite-­‐Volume	
 Framework	

•  Start with PDE: and cell averages:

•  Reconstruct spatial expansion at cell centroid:
•  Perform ADER-DT to form space-time expansion:

•  Compute space-time averages of fluxes at cell faces:
•  Compute space-time average of source over cell body:
•  Apply one Riemann solve per face per time step using space-time-

averaged limits at the interface
–  Any linearized Riemann solver will do: Upwind, LLF, HLLC

•  For general spatial operators
–  Compute time-average and apply operator like normal

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S Ui, j,k

Ui, j,k x, y, z()

Ui, j,k x, y, z, t() Fi, j,k x, y, z, t() Gi, j,k x, y, z, t() Hi, j,k x, y, z, t() Si, j,k x, y, z, t()

F̂i, j,k Ĝi, j,k Ĥi, j,k

Ŝi, j,k

Why	
 I	
 Prefer	
 Finite-­‐Volume	

•  Order of accuracy doesn’t affect the time step
•  Multi-moment doesn’t affect the time step (MMFV + HWENO)
•  WENO is a given: no added transfers, no load imbalance
•  (FV) + (ADER-DT) + ([H]WENO) + (FCT positivity) means a

positive, limited, high-order, large time step w/ only 1 transfer
•  Can do genuinely multi-dimensional with less work
–  Half-tensor of derivatives is up to 24x smaller than full-tensor in 3D

•  Some Galerkin schemes are hardwired to quadrature

•  Shaded regions depend on halo updates (163 cells at 9th-order)
•  Only 12.5% of the domain is free of halo dependence
•  Won’t the size of the transfers kill you at scale?

The	
 3-­‐D	
 High-­‐Order	
 FV	
 Halo:	
 2-­‐D	
 Slice	

•  Computation increases much
faster than communication

•  Increase in work per node
outweighs increased transfer cost

•  WENO improves this by adding
computation w/o communication

•  Ameliorates needing to overlap
computation & communication

Is	
 ADER-­‐DT	
 Viable	
 For	
 Transport?	

•  Left to Right: 3rd, 5th, 7th
•  Top panel: no limiting

•  Middle: “light WENO” &
FCT positivity

•  Bottom: “heavy WENO”
& FCT positivity

•  WENO successfully

removes bouds violating
unmixing

•  Still some unmixing at
the unresolved tail

ADER-­‐DT	
 Verses	
 Runge-­‐KuZa	

•  Multi-stage time discretizations most common (Runge-Kutta)
–  Multiple copies of the fluid state (taxing on memory)
–  Multiple data transfers per time step / small effective time step
–  Higher than 4th-order is difficult and expensive to obtain
–  Maintaining non-oscillatory properties reduces time step even further
–  WENO limiting typically applied at each stage

•  ADER-DT improves upon this
–  Only one copy of the fluid state is needed, more work per byte
–  Only one data transfer per time step / much larger effective time step
–  Any order of accuracy is as easy as changing one line of code
–  Non-oscillatory properties automatically maintained, same time step
–  Only one WENO procedure per large time step

