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Some	
  Proper:es	
  Of	
  A	
  “Good”	
  Algorithm	
  

•  Accuracy 
–  Higher-order generally gives bigger bang for your buck 
–  High-order coupling of PDE terms & dimensions 

•  Speed 
–  Larger time step 
–  Lower cost per time step 
–  Scalability 

•  Lower MPI Overhead 
•  Computing scales faster than communication 

•  Robustness 
–  Limited, non-amplifying oscillations, positivity, monotonicity 



What	
  Is	
  ADER-­‐DT?	
  

•  ADER-DT = Abritrary DERivatives with Differential Transforms 
•  ADER: (Spatial derivatives)+(the PDE itself)à(time derivatives) 

•  Temporal order of accuracy matches the spatial order 
•  A Differential Transform (DT) is just a Taylor Series coefficient 
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DTs	
  Make	
  ADER	
  Cheaper	
  &	
  Simpler	
  

Burger’s Equation 
∂q
∂t
+
∂f q( )
∂x

= 0

f q( ) = q
2

2

DT of Burger’s Equation 
Q kx,kt +1( ) = − kx +1

kt +1
F kx +1,kt( )

F kx,kt( ) = 1
2

Q rx, rt( )
rt =0

kt

∑
rx=0

kx

∑ Q kx − rx,kt − rt( )

•  All PDE terms are space-time polynomials (no quadrature) 
•  Non-linearly coupled, high-order accuracy w/ no stages (scalable) 
•  Any order of accuracy by changing just one line of code 
•  Automatically preserves non-oscillatory properties 
•  Easily adapted to any grid, spatial operator, or PDE set 
•  When using WENO, only one limiting applied per time step 
•  p-refinement happens in time as well, not only in space 



The	
  Gist	
  of	
  Why	
  I	
  Like	
  FV	
  and	
  ADER-­‐DT	
  

•  FV + ADER-DT + WENO + FCT positivity + Half-tensor 
–  Means a positive, limited, high-order, cheap, & large time step with 

only 1 data transfer per time step 

•  MMFV + ADER-DT + HWENO + FCT + Half-tensor 
–  Same as before, same time step, and you get multi-moment 



Is	
  ADER-­‐DT	
  Viable	
  For	
  Transport?	
  

•  Left to Right: 3rd, 5th, 7th 
•  Top panel: no limiting 

•  Middle: “light WENO” & 
FCT positivity 

•  Bottom: “heavy WENO” 
& FCT positivity 

•  Even 7th-order can be 
quite smooth 
–  But you pay in accuracy 

•  ADER-DT + WENO 
offers a range of limiting 
–  Two tunable parameters 
–  Can be smooth or sharp 



3-­‐D	
  Cartesian	
  Euler	
  Model:	
  Rising	
  Thermal	
  

Volume 
render with 
slice across 

y-axis 

•  Genuinely 3-D Finite-
Volume using ADER-DT 

•  ADER-DT is 5x, 4.5x, and 
2x faster than SSP-RK4 
–  5th-, 7th-, & 9th-ord ADER 

versus 4th-ord RK 
–  Using RK max stable 

time step, not SSP 
•  OpenMP + 3-D MPI 
•  3rd, 5th, 7th, & 9th-order 

accuracies so far 
•  3-D WENO limiting 
•  HLLC, LLF, or Upwind flux 
•  Uses “half-tensor” for up 

to 24x less cost 



3-­‐D	
  Cartesian	
  Euler	
  Model:	
  Colliding	
  Thermals	
  

•  20K perturbation 
bubbles collide 

•  Sharp discontinuities 
•  WENO successfully 

limits to provide stability 
•  Uses “sub-cell” method 

for multi-dim WENO 
•  Larger WENO coef 

causes more damping 
•  WENO overhead only 

30% to 60% 
–  Overhead relatively 

less for higher-order 



ADER-­‐DT	
  +	
  FV	
  Scaling:	
  3-­‐D	
  Compressible	
  Euler	
  

•  Strong scaling: 2563 cells from 1 node to 4096 nodes on Titan 
•  MPI+OpenMP; Fortran 90; Cray compiler; CPU-only for now 
•  On-node: 20% peak flops on Interlagos & Sandybridge 

Only 163 cells 
per node 

No WENO 
Limiting Used 

Simple 3-D 
MPI decomp; 

no overlapping 



Why	
  Use	
  A	
  Half-­‐Tensor?	
  

Full	
  Tensor 
for kt=0,N-1 

  for kz=0,N-1 

    for ky=0,N-1 

      for kx=0,N-1 

        for rt=0,kt 

          for rz=0,kz 

            for ry=0,ky 

              for rx=0,kx 

 

 

Half	
  Tensor	
  
for kt=0,N-1 

  for kz=0,N-1-kt 

    for ky=0,N-1-kt-kz 

      for kx=0,N-1-kt-kz-ky 

        for rt=0,kt 

          for rz=0,kz 

            for ry=0,ky 

              for rx=0,kx 

 

 •  Innermost loop body executed 102x, 205x, & 319x fewer times at 
5th-, 7th-, and 9th-order accuracies 

•  Space-time polynomial contains 8.9x, 11.4x, & 13.3x fewer terms 
•  Half-tensor make genuinely multi-dim simulation more feasible 



Handling	
  Quasi-­‐Steady	
  Balances	
  

•  Example: Hydrostasis 
•  Already have true pressure & density as space-time polynomials 
•  Equate “hydrostatic pressure” with true pressure 
•  Diagnose “hydrostatic density” with Differential Transforms 

•  Removing hydrostasis removes vertical pressure term entirely 

•  If there’s a balance, you can recast a flux term as a source term 
–  Or vice versa 
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Portability	
  For	
  Accelerators	
  

•  Enough cells per node = efficient port to GPUs 
•  How many cells? Generally ≈32K, preferably many more 
–  Equivalent to CAM-SE, 4th-order, 64 elements per node 

•  CPU implementation computes each operation on blocks 
–  Blocks of 16 (32) for double (single) precision perform best 
–  Must be known at compile time for vectorization to be successful 

•  GPU implementation would just increase block size to 32K 
–  No re-organization of data structures needed 

•  May be opportunity for more threading over DT procedure 
–  8 nested triangular loops for a 3-D simulation 
–  If surface area of “front of dependence” is large, that means threads 
–  Likely viable only at higher-order (7th and up, perhaps) 



Implementa:on	
  In	
  Finite-­‐Volume	
  Framework	
  

•  Start with PDE:                                        and cell averages:   

•  Reconstruct spatial expansion at cell centroid: 
•  Perform ADER-DT to form space-time expansion:  

•  Compute space-time averages of fluxes at cell faces: 
•  Compute space-time average of source over cell body: 
•  Apply one Riemann solve per face per time step using space-time-

averaged limits at the interface 
–  Any linearized Riemann solver will do: Upwind, LLF, HLLC 

•  For general spatial operators 
–  Compute time-average and apply operator like normal 
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Why	
  I	
  Prefer	
  Finite-­‐Volume	
  

•  Order of accuracy doesn’t affect the time step 
•  Multi-moment doesn’t affect the time step (MMFV + HWENO) 
•  WENO is a given: no added transfers, no load imbalance 
•  (FV) + (ADER-DT) + ([H]WENO) + (FCT positivity) means a 

positive, limited, high-order, large time step w/ only 1 transfer 
•  Can do genuinely multi-dimensional with less work 
–  Half-tensor of derivatives is up to 24x smaller than full-tensor in 3D 

•  Some Galerkin schemes are hardwired to quadrature 



•  Shaded regions depend on halo updates (163 cells at 9th-order) 
•  Only 12.5% of the domain is free of halo dependence 
•  Won’t the size of the transfers kill you at scale? 

The	
  3-­‐D	
  High-­‐Order	
  FV	
  Halo:	
  2-­‐D	
  Slice	
  

•  Computation increases much 
faster than communication 

•  Increase in work per node 
outweighs increased transfer cost 

•  WENO improves this by adding 
computation w/o communication 

•  Ameliorates needing to overlap 
computation & communication 



Is	
  ADER-­‐DT	
  Viable	
  For	
  Transport?	
  

•  Left to Right: 3rd, 5th, 7th 
•  Top panel: no limiting 

•  Middle: “light WENO” & 
FCT positivity 

•  Bottom: “heavy WENO” 
& FCT positivity 

 
•  WENO successfully 

removes bouds violating 
unmixing 

•  Still some unmixing at 
the unresolved tail 



ADER-­‐DT	
  Verses	
  Runge-­‐KuZa	
  

•  Multi-stage time discretizations most common (Runge-Kutta) 
–  Multiple copies of the fluid state (taxing on memory) 
–  Multiple data transfers per time step / small effective time step 
–  Higher than 4th-order is difficult and expensive to obtain 
–  Maintaining non-oscillatory properties reduces time step even further 
–  WENO limiting typically applied at each stage 

•  ADER-DT improves upon this 
–  Only one copy of the fluid state is needed, more work per byte 
–  Only one data transfer per time step / much larger effective time step 
–  Any order of accuracy is as easy as changing one line of code 
–  Non-oscillatory properties automatically maintained, same time step 
–  Only one WENO procedure per large time step 


