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1. Theoretical background:

Zonally propagating wave solutions obtained from an approximate
Schrodinger equation of the Shallow Water Equations on a
rotating sphere (focus: a “thin” ocean (gravity waves ~2-3 m/sec)

2. Numerical comparison: HH versus SH — Problematic
baroclinic limit

3. Concluding remarks and test cases



Linearized Shallow Water Equations = Free LTE
(inhomogeneous forcing of 3D dynamics determines gH)
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Scale:

V: 20q (Earth’s rotation frequency and radius, respectively)
n . Mean thickness H (so total height is A=H+#)
t:2Q
Get: A single nondimenasional parameter (the new g):
a=gH|(22a)? (the inverse of Lamb #)

Assume zonally propagating wave solution: e'K(*-C)
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The above exact set can be transformed into a
Schrodinger equation whose potential can be
approximated (on earth o«1) which yields
analytic solutions for the energy (=phase
speed) and the meridional amplitude variation

Analytical expressions should be compared to
exact (numerical) solutions of the exact system
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1. Boundary Conditions: regularity of V at the poles = (¢ =£n/2) =

2. Ein fourth problem (Lower-right box) yields 3 ¢’s via: k?c?-Ec-aa =0

3. At latitudes where a-c2cos?¢p=0 the denominator of the spherical terms vanishes
so aU, (o) is not uniformly negligible



Comparison between the approximate and exact
(numerical) dispersion relations ®(k)=kC(k)
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or smaller a (=10°) the approximation is accurate
or higher n
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Exact v
=" ®"Hermite function
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The spectral method

Rewriting the LSWE in terms of the independent variable u=sin¢, and
(the Robert functions) V=vcos¢ and U=ucos ¢.
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The regularity of u and v at the poles implies that U and V must satisfy the
boundary conditions U{u=#1)= V(u=#1)=0, and these boundary conditions
also ensure the regularity of the spatial derivatives of U, V and n.




The spectral method

Seeking approximate (truncated) series solutions of the form:

where
£ stands for any of the dependent variables U, V or 7
. 95:1 are the corresponding time dependent spectral coefficients

* ¢ are the spatial basis functions
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The system of ODEs for the spectral coefficients
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Single eigenmode test

The solver was initialized with a pure eigenmode of the baroclinic LSWE, i.e. with U,V, n
corresponding to combination of a certain wavenumber, k, and a given mode number, n,

where one of the three possible phase speeds determines the type of wave.



Single eigenmode test: HH

Rossby: a=>5e-6; n=>5; k=10

ucoso t=0 10 ucosd t=100 days 10°
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Single eigenmode test: HH

Negative Poincaré: a=>5e-6; n=>5; k=10
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Single eigenmode test: HH — propagation

vcosd at u=0.087
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Amplitude spectrum at A=0, u=0.087
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Dispersion relation: a=5e-6
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Single eigenmode test—-1/,, I, I, errors
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Comparison between HH and SH
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Comparison between HH and SH
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Summary

 The HSWS accurately conserve the eigensolutions of the LSWE to
within 1% of the phase speed and with no appreciable distortion of the

waves’ structure for at least 100 day.

* In contrast, The LSWS exhibit severe distortion of the waves’ structures
within hours-days with comparable (or even slightly greater)
spectral/grid-space resolutions and the solution looses its zonally

propagating wave structure.

« This distortion, or tilting, phenomenon where the phase speed appears
to be latitude dependent was previously noted (also with finite volume
method - MITgcm) and was wrongfully attributed to physical

phenomena.



 The advantages of the proposed basis functions can be traced back to its

origin in the system of ODEs for the spectral coefficients.
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The system of ODEs for the spectral coefficients

1+ ak2 1
Hermite Harmonics: for an«1 (and also ak?«1): A= \/,

Sr+2

rs : 2A ;
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M9 - | and consequently M™ = I.

Spherical Harmonics: for an’«1 (and also ak?«1):

M9 =¢&".&",0,. (5;”8;” +5;"_15;"_1—1)5 +elel 0

r+1~ sr+2

g,M is independent of a.




Discussion

 The advantages of the proposed basis functions can be traced back to its

origin in the system of ODEs for the spectral coefficients.

e The Gaussian envelope of the Hermite functions makes the solver less

sensitive to inaccuracies, such as round off or truncation errors, near the

poles.

 Hermite transforms have high resolution (are denser) near the equator, in
the waves’ region of existence, whereas Spherical Harmonics transforms

“waste” resolution near the poles, where the waves vanish.



