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Transport Problem

A tracer, represented by its mixing ratio q and mass ρq, is transported
in the flow with velocity u

∂ρ

∂t
+∇ · ρu = 0

∂ρq

∂t
+∇ · ρqu = 0

 → Dq

Dt
= 0

Solution methods should satisfy
local conservation of ρq

monotonicity or bounds preservation of q

consistency between q and ρ (free stream preserving)

preservation of linear correlations between tracers (q1 = aq2 + b)
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Incremental Remap for Transport

Given a partition C(Ω) into cells ci, i = 1, ...C

cell mass mi =

Z
ci

ρ(x, t)dV

cell area µi =

Z
ci

dV

cell average density ρi =
mi

µi

cell average tracer concentration

qi =

R
ci

ρ(x, t)q(x, t)dVR
ci

ρ(x, t)dVZ
ci

ρ(x, t)q(x, t)dV = miqi

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

For a Lagrangian volume, VL

d

dt

Z
VL

ρ(x, t)dV = 0

d

dt

Z
VL

q(x, t)ρ(x, t)dV = 0
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Incremental Remap for Transport

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

1 Project arrival grid to departure grid: C(Ω(t + ∆t)) 7→ eC(Ω(t))

2 Remap: ρ(t) 7→ ρ̃(t), q(t) 7→ eq(t)
3 Lagrangian update:

mi(t + ∆t) = m̃i(t), ρi(t + ∆t) =
mi(t + ∆t)

µi(t + ∆t)
, qi(t + ∆t) = q̃i(t)

Dukowicz and Baumgardner (2000) JCP
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Density and Tracer Remap

Given mean density and tracer values ρi, qi on the old grid cells ci,
find accurate approximations for m̃i and q̃i on the new cells c̃i such
that:

Total mass and tracer are conserved:

CX
i=1

emi =
CX

i=1

mi = M
CX

i=1

emieqi =
CX

i=1

miqi = Q .

Mean density and tracer approximations on the new cells, eρi = emieµi
and

qi satisfy the local bounds

ρmin
i ≤ eρi ≤ ρmax

i , i = 1, . . . , C ,

qmin
i ≤ eqi ≤ qmax

i , i = 1, . . . , C ,
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Optimization-Based Remap

Objective
‖ũ− uT ‖

minimize the distance
between the solution and a

suitable target

Target
∂tu

T = LhuT

stable and accurate solution,
not required to possess all
desired physical properties

Constraints
C ≤ Cũ ≤ C

desired physical properties
viewed as constraints on the

state

Advantages
Solution is globally optimal with respect to the target and desired
physical properties
Decouples accuracy from enforcement of physical properties
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Density Formulation

m̃i =
∫
ci

ρ(x)dV +
(∫eci

ρ(x)dV −
∫
ci

ρ(x)dV
)

= mi + ui

Objective
1

2
‖ũ− uT‖2

`2

Target uT
i :=

∫
eci

ρh(x)dV −
∫

ci

ρh(x)dV

Constraints
C∑

i=1

ũi = 0, ρmin
i ≤ ρ̃i ≤ ρmax

i

Bochev, Ridzal, Shashkov (2013) JCP
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Tracer Formulation

q̃i =

∫eci
ρ(x)q(x)dV∫eci

ρ(x)dV

Objective
1

2
‖q̃ − qT‖2

`2

Target qT
i :=

∫eci
ρh(x)qh(x)dV∫eci

ρh(x)dV

Constraints
C∑

i=1

m̃iq̃i = Q, qmin
i ≤ q̃i ≤ qmax

i
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OBR Algorithm

8>>><>>>:
minimize

1

2
‖eu− uT‖2

`2
subject to

CX
i=1

eui = 0, mmin
i ≤ m + eu ≤ mmax

i

8>>><>>>:
minimize

1

2
‖eq − qT‖2

`2
subject to

CX
i=1

eqi = Q, qmin
i ≤ eq ≤ qmax

i

Singly linearly constrained quadratic programs with simple bounds

Solve related separable problem (without mass constraint) first,
cost O(C)

Satisfy the mass conservation constraint in a few secant
iterations
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Density and Tracer Reconstructions

ρh(x)|ci = ρi + gρ
i · (x− bi)

qh(x)|ci = qi + gq
i · (x− ci)

Approximate gradients (gρ
i ≈ ∇ρ, gq

i ≈ ∇q) computed using
least-squares fit with five point stencil

Cell barycenter bi =

∫
ci

xdV

µi

Cell center of mass ci =

∫
ci

xρi(x)dV

mi

Mean preserving by construction

1

µi

∫
ci

ρh(x)dV = ρi
1

mi

∫
ci

ρh(x)qh(x)dV = qi

Dukowicz and Baumgardner (2000) JCP
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Swept Area Approximation

!i (t)
qi (t)

!m (t)
qm (t)

! im

!i (t)
qi (t)

!l (t)
ql (t)

! il

!i (t)
qi (t)

!i (t)
qi (t)

! j (t)
qj (t)! ij

!i (t)
qi (t)

!k (t)
qk (t)

! ik

F ρ
is =

∫
σis

ρh
i/s(x)dV

F q
is =

∫
σis

ρh
i/s(x)qh

i/s(x)dV

uT
i ≈

∑
s

F ρ
is

qT
i ≈

qi(t)mi(t) +
∑

s F q
is

mi(t) + uT
i
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Cubed Sphere Grid

Six faces of cube projected onto surface of
sphere

Equiangular gnomonic projection with
central angles, α, β ∈ [−π/4, π/4]

Local coordinates
x = a tan α, y = a tan β p = 1, ..., 6Z

V
dV = −

Z
∂V

1

1 + x2

y

r
dx

Z
V

xdV = −
Z

∂V

1

1 + x2

xy

r
dx

Z
V

ydV =

Z
∂V

1

r
dx

r =
p

1 + x2 + y2 for a = 1

See Ullrich et al. (2009) Monthly Weather Review, Lauritzen et al.(2010) JCP.
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Computational Examples

Test cases from Lauritzen et al. (2012) Geosci.
Model Dev.

Initial density distribution set to one everywhere

Three types of tracer distributions
Smooth Gaussian hills
Cosine bells
Notched cylinders

Initial tracer distributions centered at
(λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0)

Nondivergent deformational flow field, T = 5:

u(λ, θ, t) = 2 sin2 (λ− 2πt/T ) sin(2θ) cos (πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin (2 (λ− 2πt/T )) cos(θ) cos (πt/T )
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Convergence Test

t = 0 t = 2.5 t = 5

OBT∗ Unlimited
mesh steps l2 l∞ l2 l∞

3◦ 600 0.386 0.465 0.368 0.425
1.5◦ 1200 0.182 0.268 0.172 0.225
0.75◦ 2400 0.0626 0.113 0.0559 0.0843
0.375◦ 4800 0.0167 0.0425 0.0144 0.0233

Rate 1.51 1.16 1.56 1.40
3 1.5 0.75 0.375

10−2

10−1

100

 

 
l
2
 OBT

l∞ OBT

l
2
 Unlim

l∞ Unlim

∗ Optimization-based transport
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Linear Tracer Correlation Test

Two tracers with initial distributions linearly correlated cosine bells,
q1 has min = 0.1 and max = 1.0, q2 = −0.8q1 + 0.9.

q1 q2

Correlation t = 2.5
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Nonlinear Tracer Correlation Test
Two tracers with initial distributions nonlinearly correlated cosine bells,

q1 has min = 0.1 and max = 1.0, q2 = −0.8(q1)
2 + 0.9

with min = 0.1 and max = 0.892.

q1 q2

Correlation t = 2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
1

q 2

min/max 0.1/0.878 0.292/0.892
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Nonlinear Tracer Correlation Test
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Filament Preservation Test

lf (τ, t) = 100.0× A(τ, t)

A(τ, 0)

where A(τ, t) is the total area for
which q ≥ τ .

t = 0 t = 2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

 

 

OBT 1.5°

OBT 0.75°

OBT 0.375°

April 7, 2014 18



Filament Preservation Test

lf (τ, t) = 100.0× A(τ, t)

A(τ, 0)

where A(τ, t) is the total area for
which q ≥ τ .

t = 0 t = 2.5
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Discontinuous Tracer Test

Initial OBT Slope Limited Unlimited

min = 0.1 min = 0.10 min = 0.078 min = -0.020
max = 1.0 max = 1.00 max = 1.030 max = 1.14
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Conclusions

Optimization-based transport offers a robust and flexible alternative to
standard transport techniques

Solution is mass conserving, bounds preserving, and free stream
preserving.

Optimization algorithm is efficient and computationally competitive with
standard slope limiting in these examples.

More details in:
Bochev, Ridzal, Scovazzi, Shashkov (2011) "Formulation, analysis and numerical study
of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary
lagrangian-eulerian methods", JCP

Bochev, Ridzal, Shashkov (2013) "Fast optimization-based conservative remap of
scalar fields through aggregate mass transfer", JCP

Bochev, Ridzal, Peterson (2014) "Optimization-based remap and transport: a divide
and conquer strategy for feature-preserving discretizations", JCP

Peterson, Bochev, Ridzal (2014) "Optimization-based transport on the cubed sphere
grid", Proceedings of LSSC13.

April 7, 2014 21


	Tracer Transport Problem
	Optimization-based Transport
	Computational Examples

