
An analytical solution for gravity and sound wave expansion of the  

linearized compressible, non-hydrostatic Euler equations on the sphere 

Michael Baldauf, Daniel Reinert, Günther Zängl 

M. Baldauf. D. Reinert, G. Zängl (2014) QJRMS 

Test scenarios 

(A)Only gravity wave and sound wave 

expansion 

(B)Additional Coriolis force (,global f-plane 

approx. on a sphere‘)  

(C)Additional advection by a solid body 

rotation velocity field  v0 = Q  r 

Convergence of the ICON model (test (B)): 
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Test initialization 

 

 

 

 

 

 

Time evolution of T‘ 

 

after 30 min.: 

 

 

 

 

 

 

 

 

 

 

 

 

after 75 min.: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Black lines: analytic solution 

Colours:     ICON simulation 
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Motivation 

For the development of dynamical cores (or numerical methods in general) 

idealized test cases are an important evaluation tool. 

 

• Idealized standard test cases with (at least approximated) analytic solutions: 

• stationary flow over mountains  

linear: Queney (1947, ...), Smith (1979, ...) Adv Geophys,  Baldauf (2008)   

   COSMO-Newsl. 

non-linear: Long (1955) Tellus  for Boussinesq-approx. atmosphere 

• Balanced solutions on the sphere: Staniforth, White (2011) ASL 

• non-stationary, linear expansion of gravity waves in a channel 

Skamarock, Klemp (1994) MWR for Boussinesq-approx. atmosphere 

• most of the other idealized tests only possess 'known solutions' gained  

from other numerical models. 

 

There exist even fewer analytic solutions which use exactly the same equations 

as the numerical model used, i.e. in the sense that the numerical model  

converges to this solution. One exception is given here:  

                   linear expansion of gravity/sound waves on the sphere 

 

Non-hydrostatic, compressible, 
shallow atmosphere, adiabatic, 
3D Euler equations on a sphere: 
 

 

 

 

 

 

 

 

 

 

 

 

For an analytic solution only one further  

approximation is needed: 

linearisation (= controlled approx.) 

around an isothermal, steady, 

hydrostatic atmosphere. 

Analytic solution 

for the vertical velocity w (Fourier 

component with kz, spherical harmonic 

with l,m )  

 

 

 

analogous expressions for ûlm(kz, t), ... 

 

The frequencies ,  are the gravity 

wave and acoustic branch, 

respectively, of the dispersion relation 

for compressible waves in a spherical 

channel of height H;    kz = ( / H)  n: 

 

 

 

 

 

 

 

 

  

 

Boundary conditions: 

w(r=rs) = 0 

w(r=rs+H) = 0   (rigid lid) 

Solution strategy 

Isothermal background state + shallow 

atmosphere approx. 

 Bretherton (1966) transformation  

 all coefficients of the linearized PDE 

system are constant  

Shallow atmosphere approximation 

• replace all prefactors 1/r  1/rs 

• in the divergence operator: omit the 

metric correction term ~ w/r 

• apart from that all earth curvature 

metric terms are included 

• (optional) Coriolis force by ,global f-

plane approx. on a sphere‘: 

    2 (,) = f  er (,),   f=const.  

       (and v0 = 0) 

Spectral representation of fields: 

 

 

Spherical harmonics: 

 

 

Time integration by Laplace transform 

Test scenarios 

(A) Only gravity wave and sound wave 

expansion 

(B) Additional Coriolis force (,global f-

plane approx. on a sphere‘)  

 test proper discretization of 

inertia-gravity modes, e.g. in a C-

grid discretization. 

(C) Additional advection by a solid 

body rotation velocity field  v0 = Q  

r 

 test the coupling of fast 

(buoyancy, sound) and slow 

(advection) processes.  

Problem: solid body rotation field 

generates centrifugal forces. 

Solution: choose Q = -   

 conforms to case (A) in the 

absolute system. 

Convergence tests with 

ICON 
 

Error measures L2 (solid lines) and L 

(dashed) for T‘ (+ signs) and w () after 

75 min. 

 

Test scenario (A): 

 

 

 

 

 

 

 

 

 

Test scenario (B): 

 

 

 

 

 

 

 

 

 

 

Test scenario (C): 

 

 

 

 

 

 

 

 

 

 

The ICON model 

• joint development of DWD and  

MPI-M Hamburg 

• ICOsahedral-triangular Arakawa-C 

grid 

• Non-hydrostatic, compressible Eq. 

for vn, w, , v (or ) 

• mixed FV- and FD- disretisations 

• mass- and tracer-mass conservation 

• predictor-corrector scheme (HE-VI) 

• relevant for these tests: 

switch off any off-centring in the 

vertical implicit sound wave 

propagation  2nd order 

convergence 

 

Small earth simulations 

Wedi, Smolarkiewicz (2009) QJRMS 

• rs= rearth / 50  ~ 127 km 

simulations with   ~ 1°... 0.0625° 

  x ~ 2.2 km ... 0.14 km  

 non-hydrostatic regime 

• for runs with Coriolis force: 

f = fearth  10   ~  10-3 1/s 

 dimensionless numbers 

 Ro   = 0.2  Roearth   

 f / N = 10  fearth / N  ~ 0.07 
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