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The effective resolution is the smallest scale that is completely
resolved by the model

We develop two methods to calculate the effective resolution of
advection schemes

» dispersion relation analysis

» numerical testing

We use these methods to investigate modeling choices:
order-of-accuracy, explicit diffusion, time stepping, flux limiters
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Introduction

Advection schemes are important building blocks of atmospheric dynamical cores. The effective resolution
of a numerical scheme is the smallest spatial scale, i.e. the largest wave number, that is fully resolved by
that numerical scheme. The effective resolution is often significantly larger than the grid spacing, and it
provides insight into which atmospheric features a model at a given grid resolution is able to represent.

One tool to evaluate numerical schemes is dispersion relation analysis. This analysis has been used to
calculate the effective resolution of numerical schemes for the linearized shallow-water equations (Ullrich,
2014). We use this dispersion relation analysis to assess numerical advection schemes, taking into account
the effects of different sized time steps.

The dispersion relation analysis can only be applied to linear schemes, yet many advection schemes make
use of non-linear components, such as flux limiters. We therefore develop a numerical test method that
enables the calculation of the effective resolution of non-linear schemes.
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Here q is the advected quantity (tracer mixing ratio) and u=1 is the constant velocity. We only consider a
uniform grid of equal grid spacing with 0<x<1.

The advection equation is given as:

Dispersion Relation Analysis

Amplitude Factor Dispersion Relation

The advection equation supports wavelike
solutions of the form:
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Using this, the amplitude factor and dispersion

relation for the advection equation can be
calculated as: 0.6/
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dispersion relation of a given numerical

scheme we insert the solution for the discrete

tracer into the scheme’s discretization: 0.2 osh
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Wave number k is classed as resolved by a A 4Ax 24ax
numerical scheme if the amplitude factor and
dispersion relation are within 99% of the true
value. We perform the analysis for a number of
Courant numbers, ¢ = uAt/Ax. For consistency
we evaluate the cumulative effect of the
schemes over the distance Ax. This means that
the numerically calculated amplitude factor is
taken to the power 1/c. This process is described
fully in Kent et al. 2014a.
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Figure 1: The amplitude factor and dispersion
relation for the first- to sixth-order forward-in-
time finite-difference schemes, plotted against
wave length for c=0.1. The vertical dotted lines
indicate the 16Ax, 8Ax, 4Ax and 2Ax wave
lengths. The effective resolution of a numerical
scheme is the largest wave number where both
the amplitude factor and dispersion relation are
within 99% of the true value.
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Figure 2: The smallest resolved wave in terms of N (Ax) due to the diffusion/amplitude factor error (left),
the dispersion relation error (center), and both the diffusion and dispersion error (right), for the first- to
sixth-order forward-in-time finite-difference schemes for 0<c<1.
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Numerical Test
We have developed a test that allows the calculation of the effective resolution of any advection scheme
linear or non-linear). To create initial conditions of wave number k we use:
! J q, =1+ cos(2mkx)

Using a given numerical scheme we advect this profile over a number of time steps. We calculate the
normalized mean square error and decompose this into diffusive and dispersive parts following Takacs
(1985). If the diffusive or dispersive error exceeds a given threshold, then wave number k is classed as
unresolved. The process is repeated over all wave numbers k until the first unresolved wave is found. The
numerical test is described in more detail in Kent et al. 2014b.
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Figure 5: The effective
resolution of the second- to
fifth-order forward-in-time 40+
finite-difference schemes using ;X‘
the flux limiter (FL) of Thuburn > 30
(1996). The results are shown 20+
for a number of different
length simulations, where TS is
the number of time steps.
Initially the flux limiter
introduces large diffusion and
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Conclusions

The effective resolution is the smallest wave that a numerical scheme can fully resolve. This can be
calculated for linear schemes using dispersion relation analysis. We have developed a test that
enables the effective resolution of any scheme (linear or non-linear) to be calculated.

*Increasing the spatial order-of-accuracy improves the effective resolution

*The greatest improvement when increasing the order-of-accuracy is found for low order schemes. The
improvement diminishes for higher-order schemes (above third-order)

*For non-linear schemes the effective resolution is dependent on the length of the simulation

«Initially, flux limiters introduce large errors, and the effective resolution is poor. Over more time steps
the effective resolution of the limited schemes tends to that of the corresponding order unlimited
scheme

The effective resolution of numerical advection schemes is always larger than the grid spacing. For a
third-order scheme at low Courant numbers the effective resolution is close to 10 times the grid
spacing. Although the advection scheme is far removed from the dynamical core, the gap between the
grid-scale and the effective resolution provides an insight into the description of uncertainty that is
associated with dynamical cores (e.g. variable resolution grids, topography, grid-scale physics).
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