
Mimetic finite elements

Mimetic properties
Discrete versions of calculus identities:
∇·∇⊥ψ = 0,∇⊥ ·∇D = 0,∇⊥ ·u⊥ = ∇·u, where (∇⊥ = k×∇).

Compatible finite element spaces in 2D

V0︸︷︷︸
Continuous

∇⊥=(−∂y ,∂x )−−−−−−−−−→ V1︸︷︷︸
Continuous normals

∇·−−−−→ V2︸︷︷︸
Discontinuous

∇· maps from V1 onto V2.
∇⊥ maps from V0 onto ker(∇·) in V1.

Applied to the linearised shallow water equations:
1) global energy conservation 2) local mass conservation
3) steady geostrophic states 4) no spurious pressure modes
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Application to nonlinear shallow water equations

ut + (uqD︸︷︷︸
Q

)⊥ = −∇
(

1
2
|u|2 + gD

)
(1) Dt +∇( uD︸︷︷︸

F

) = 0 (2)

where q = ζ+f
D and ζ = ∇⊥u

∇⊥(1) gives (qD)t +∇ ·Q = 0 (3)

Timestepping:
within each timestep perform multiple quasi Newton
iterations: solve the Helmholtz equation for updates to u
and D using a hybridized method
first need to calculate F and Q:

solve equation 2 for D and calculate mass flux F : flux
reconstruction
solve equation 3 for q and diagnose potential vorticity flux
Q: Taylor-Galerkin methods
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Mimetic finite element methods for solving the nonlinear rot ating shallow water equations.
Jemma Shipton and Colin Cotter

Department of Mathematics, Imperial College London

Motivation

◮Construct numerical schemes that have all the desirable properties of the C-grid finite
difference discretisation, without the constraint that the grid be orthogonal

◮Devise stable, consistent advection schemes for both layer depth (discontinuous) and
potential vorticity (continuous) fields

◮Present benchmarking results from standard testcases

Mimetic properties

Discrete analogues of the vector calculus identities

∇ · ∇⊥ψ ≡ 0, ∇⊥ · ∇ψ ≡ 0, ∇⊥ · u⊥ ≡ ∇ · u
where ∇⊥ = k ×∇ and u⊥ = k × u where k is the normal to the surface.
Applied to the linearised shallow water equations [1]:

◮satisfy LBB condition
◮global energy conservation
◮ local mass conservation

◮steady geostrophic modes
◮no spurious pressure modes

Shallow water equations

ut+(ζ+f )u⊥+∇

(

g(D + b) +
1
2
|u|2

)

= 0 (1) Dt +∇ · (uD) = 0 (2)

u: horizontal velocity, D: layer depth, b: height of the lower boundary,f : Coriolis parameter,
ζ: vorticity (= ∇⊥u), g: gravitational acceleration.
Combining equation 2 with ∇⊥ equation 1 gives Lagrangian conservation of potential
vorticity, q:

qt + (u · ∇)q = 0, where q =
ζ + f

D

Compatible finite element spaces

H1 ∇⊥

−−→ H(div)
∇·
−→ L2



yπ0



yπ1



yπ2

V0
∇⊥

−−→ V1
∇·
−→ V2

◮The condition that u ∈ V1 ⊂ H(div) means that u must have
continuous normal components.

◮D ∈ V2 is fully discontinuous.

V0 = P2+
︸ ︷︷ ︸

Quadratic (+1 Cubic) Continuous

∇⊥

−−−−→ V1 = BDFM1
︸ ︷︷ ︸

Linear (+2 Quadratic) Cont. normals

∇·
−−−−→ V2 = P1DG

︸ ︷︷ ︸

Linear Discontinuous

V0 = Q2
︸ ︷︷ ︸

Biquadratic Continuous

∇⊥

−−−−→ V1 = RT 1
︸ ︷︷ ︸

Bilinear/Biquadratic, Cont. normals

∇·
−−−−→ V2 = Q1DG

︸ ︷︷ ︸

Bilinear, Discontinuous

Both satisfy dim(V1) = 2dim(V2), the condition necessary for preventing spurious modes.

Constructing V1 on the sphere

Integrals are computed over a reference element so we need to map to the physical element

������

��

�

ge : e′ → e,
x = ge(x

′).

For vector fields we use the Piola transformation u′ 7→ u:

u(ge(x
′)) =

Ju′

det J
, where J =

∂ge

∂x ′

◮Ensures u is tangent to the surface of the sphere
◮Divergence:

∇ · u(g(x ′)) =
∇′ · u′(x ′)

det J(x ′)
.

◮Normal components:∫

f
u′ · n′ dx =

∫

ge(f )
u · n dx .

All matrices (except mass matrices) are topological, i.e. they are independent of coordinates.

Mixed finite element discretisation

Multiply equations 1-2 by appropriate test functions, w ∈ V1 and φ ∈ V2, and integrate over
the domain Ω:

∫

Ω

w · ut dV +

∫

Ω

w · Q⊥ dV −

∫

Ω

∇ · w
(

g (D + b) +
1
2
|u|2

)

dV = 0, (3)
∫

Ω

φ (Dt +∇ · F ) dV = 0, (4)

where we have introduced the mass flux F = uD and potential vorticity flux Q = qF . Require
discrete potential vorticity q ∈ V0 to satisfy

∫

Ω

γqD dV =

∫

Ω

−∇⊥γu dV +

∫

Ω

γf dV ∀γ ∈ V0. (5)

Differentiate equation 5 and substitute for ut using equation 3 with w = −∇⊥γ. Since
∇ · ∇⊥ ≡ 0 and we assume ft = 0, this gives an advection equation for q:

∫

Ω

γ(qD)t +∇γ · Q dV = 0. (6)

Rearranging gives: ∫

Ω

γ(Dqt + F · ∇q) dV = −

∫

Ω

γq (Dt +∇ · F )
︸ ︷︷ ︸

=0for flat elements [3]

dV . (7)

i.e. if q is initially spatially constant it will remain so. This consistency can be recovered for
higher order curved elements (see Colin’s talk).

Timestepping

◮discretise equations 3-4 in time using the theta method
◮within each timestep perform multiple quasi Newton iterations: solve the Helmholtz equation

for updates to u and D (see following box)
◮first need to calculate F and Q:

◮solve equation 4 for D and calculate mass flux F (see flux reconstruction)
◮solve equation 6 for q and diagnose potential vorticity flux Q (see Taylor-Galerkin methods)

Hybridized Helmholtz equation
∫

Ω

w ·∆u dx −∆t
∫

Ω

∇ · w∆D dx =

∫

Ω

w · Ru dx ∀w ∈ V1
∫

Ω

φ∆D dx +∆t
∫

Ω

φ∇ · u dx =

∫

Ω

φRD dx ∀φ ∈ V2

Trace space for RT0 elements
◮Relax continuity constraints and allow u to be fully discontinuous
◮Define a set of Lagrange multipliers λ on the trace space of V1 (i.e. on the set of element

edges) and use these to enforce continuity of the normal component of u.
∫

Γ

µ[u · n]ds = 0,
∫

Ω

w̄ ·∆ū dx −∆t
∫

Ω

∇ · w̄∆D dx =

∫

Ω

w̄ · Ru dx +

∫

Γ

λ[w · n] ds ∀w̄ ∈ V̄1

◮Eliminate both u and D to give a symmetric, positive definite matrix-vector equation for λ
◮u and D are reconstructed within each element from the values of λ on the element edges.
Advantages: can implicitly include Coriolis term and avoid lumping the mass matrix.

Flux reconstruction

Solve the weak form of the mass continuity equation 4 in each element:
∫

e
φ∆D dx −∆t

∫

e
∇φ · uD dx +∆t

∫

∂e
φD̃u · n ds = 0.

where D̃ is the value of D on the upwind side of ∂e, using standard DG advection methods -
in this case, 3rd order SSPRK. Aim: to find mass flux F ∈ V1 that satisfies ∆D = ∆t∇ · F .
This mass flux can be constructed in each element by solving the following set of equations:
∫

δe
φF ·n ds =

∫

δe
φD̃u·n dS,

∫

e
∇φ·F dx =

∫

e
∇φ·uD dV ∀φ ∈ V2,

∫

e
∇⊥γ ·F dV = 0 ∀γ ∈ V0

Taylor-Galerkin methods for PV advection

Solve equation 6 using a multistage method with q at each stage defined as

q̂Di − η(∆t)2((qD)i)tt = ∆t
i−1∑

j=0

µij((qD)j)t + (∆t)2
i−1∑

j=0

νij((qD)j)tt

where i = 1, ..., k denotes the stage and the {µ}ij and {ν}ij are coefficients defined in [4].
Using equation 6 to replace temporal derivatives with spatial derivatives, we can write:

∫

Ω

γ
(

(qD)j

)

t
dV = −

∫

Ω

∇γ·Fq dV and
∫

Ω

γ
(

(qD)j

)

tt
dV = −

∫

Ω

F
D

· ∇γF · ∇q dV

which, comparing with equation 6, we see is exactly the form we require. We use a 2 level,
3rd order in time T̄ (2, 3) Taylor-Galerkin scheme to solve the continuity equation for q. This
is stable for values of η > 0.473.

Results

Solid body rotation:
Williamson [5], test case 2
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L2 error of depth and velocity fields after 5 days,
versus mesh size dx , for BDFM1 and RT1 finite
element spaces.

Flow over mountain:
Williamson [5], test case 5
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L2 error of depth field, compared to reference
solution, at 15 days, versus mesh size dx , for the
BDFM1 finite element space.

Flow over mountain:
Snapshot of potential vorticity at
50 days for Williamson test case
5, for the BDFM1 finite element
space.

Barotropically unstable jet (Galewsky [2])
Vorticity field at 6 days for the barotropically unstable jet from Galewsky
et. al. [2], using BDFM1 on a grid with 184320 DOFs, corresponding to
an average mesh size of 240901m.
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