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The impact of localized grid refinement on subgrid parameterization in
idealized climate simulations

* For variable-resolution general circulation models to be
effective tools for climate assessments they need to be
validated in conjunction with subgrid physical

parameterization

* Use DoE/NSF Community Atmosphere Model Spectral
Element dynamical core (CAM-SE) to test variable-
resolution performance with GCM physics package

* Perform 6 simulations using “control” aquaplanet from

Neale and Hoskins (2000, ASL)
* Three using CAM4 physics
* Three using CAM5 physics

» Assess climatology

“coarse”

“var-res”

“fine”




(Some) Results

CAM4

CAM5

Cloud fracti Precipitation
-
......................
|
= .
\F’ ﬂ L oiferspes powsen vRang oz
»
N
e 1 - \ce between
—_——
S
o

CAM4 physics shows extreme scale
sensitivity to cloud fraction, CAM5 much
improved

Both physics packages increase
precipitation with resolution
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Variable Resolution in CAM-SE Parameterization Behavior Across Scales
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Six aquaplanet experiments following Neale and Hoskins e - CAM4 and CAMS contour plots of total cloud fraction (%, top) and precipitation (mm/day.
(2000, ASL) “control” case P oo ) e 59 ) e e, e Seres bt e e
* Three with CAM version 4 physics Precipitation increases at equator with increasing resolution for
» Three with CAM version 5 physics (bulk aerosols) both CAM4 and CAM5
Aquaplanet excellent idealized framework for evaluating Adjusts more “instantaneously” to resolution than cloud fraction equatorial - e
variable-resolution simulations s
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Setup CS res. Ax Az Cells dtg, Ky
(°) (km) (#)  (s) (m'sTH)

Model fine n.120 0.25° 28 86,400 50 1.00E+13
Settings coarse nNld 2° 222 1,350 600 1.00E+4+16
n.15x8 10,609 50 varies

var-res varies varies

(left) and CAMS5 (right) physics. In (b) the 200 hPa eddy
streamfunction is contoured by 106 m?/s. Negative contours are

Zonal anomalies of (a) vertically integrated moist heating and (b)
200 hPa divergence (color contours) for var-res grid with CAM4
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CS res. is the cubed-sphere resolution, Ax is the grid spacing in degrees and kilometers, [ DEEEEEE | T DEEEEEN |

Cells is the number of elements tiling the sphere, dt,,is the dynamics timestep and K, is the 05 04 -03 02 01 0 01 02 03 04 05 05 04 -03 02 -01 0 01 02 03 04 05
fourth-order hyper-diffusion coefficient

Uniform simulations -> 12 months (after spinup) _
Var-res simulations -> 48 months (after spinup) Equatorlal Waves (CAM5)
Statistics averaged over entire simulation length since

model forcings (SSTs, aerosols, etc.) are constant in time
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° ] : Precipitation histogram of fraction (log scale) of instances where 6-hourly precipitation :
M T - - A ey g - rates were in specific intensity bins (CAM5 runs). Statistics averaged between 10° N/ SpaCI ng Of same

N
S. Var-res simulation is broken into component resolutions (pastel colors). Data is . .
uniform grid

1 O 609 , o Top two rows -> same in both panels; bin size and horizontal axis are modified.
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elements R ~ Ol - v (2008a, Tellus) * Refined CAM-SE grids coupled to subgrid physical

- Cursory simulations show essentially linear speedup for the AN 0 NG P RN, = g No anomalous parameterizations in idealized settings show promising

atmospheric component - Sie= M- power spikes results
« Var-res simulation runs 7-9 times faster than uniform fine Pl M f Var-res runs show * No spurious grid imprinting or wave reflection at
grid (without controlling for variations due to hardware) Tt o LTt ot Ctransition” boundaries, even with addition of parameterizations which

between uniform/ update dynamical state variables
e = coarse resolutions » Climate in refined nest matches climatology from a
Reference e @7/ms s -+ Normalized uniform high-resolution simulations of equivalent

B s AN ! spectra (bottom resolution (clouds, precipitation averages and extremes)
row) show robust CAM4 physics exhibits strong sensitivity to resolution; poor
Kelvin waves, choice for variable-resolution simulations
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CAM's Variable-Resolution Dynamical Core.” J. Clim. e — CAMS simulations show significantly more promise in

http://dx.doi.org/10.1175/JCLI-D-14-00004.1 (manuscript available Wavenumber-frequency diagrams of uigoing longuave radiation averaged between facilitating variable-resolution in coupled climate

on http://www.colinzarzycki.com until AMS Early Online Release) (d-f), and normalized symmetric (g-i) components of t.he log (?f the power are shown appl|Cat|OnS
for the coarse (a,d,g), var-res (b,e,h), and fine (c,f,i) simulations
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