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Tempest Framework m

An Earth-system modeling framework
formulated using an explicitly evaluated
horizontal discretization and implicitly
evaluated vertical discretization (HEVI).

Built using block-based refinement
analogous to Colella and Berger (1989).
Geometry is included via Riemannian
metric terms.

Allows for effectively arbitrary (and
nested) quadrilateral structures in the
horizontal, with current support for
Cartesian and Cubed-Sphere grids.

Numerical methods formulated

independent of grid. Figure: A cubed-sphere refinement
patch over California.
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HARDCore Dynamics m

High-order Adaptively Refined Dynamical
Core (HARDCore).

Currently supports Spectral Element (SE),
Discontinuous Galerkin (DG) and Flux
Reconstruction (FR) type methods with
arbitrary order-of-accuracy in horizontal
and vertical. Goal is to also support
upwind and central Finite Volume (FV)
methods.

Non-hydrostatic dynamics with the full set
of fluid equations, with additional support
for a spatially-variable reference profile.

Figure: A cubed-sphere refinement
patch over California.
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Two New Technologies
Part 1

S~ —

Non-conservative discontinuous Galerkin

Part 2 F

A new approach to a high-order vertical discretization J
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Motivation: Spurious Vertical
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Motivation: Vertical Stratification

Figure: A low-order vertical
coordinate does a poor job of
resolving hydrostatic balance
due to approximately
exponential decay of the
pressure and density terms.

Most non-hydrostatic
numerical models instead use
a “reference profile” —a
spatially variable steady l
background state — which is :
subtracted from the equations :
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Nodal Finite Element Method

Finite-element methods are a common framework for high-order methods.
A typical continuous basis using the spectral element method is situated on
Gauss-Lobatto nodes. A discontinuous basis is defined on Gauss nodes.
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Gauss-Lobatto nodes
within an element
(model interfaces) Lj,2 Q@

(usual starting point for
72 @ Spectral Element Method)
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Nodal Finite Element Method

Each node is then associated with a unique basis function which is 1 at a
particular node and O at all other nodes.
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Finite Element Metho(q 1p conservation Eqn
Examining the 1D conservation @ + QF(Q) — 0
equation, one can obtain a differential Ot ox

formulation of the finite element g J

method on nodes.
Step 1: Calculate fluxes F; at each nodal location x;.

Step 2: Fit an interpolating polynomial through nodal fluxes.

Step 3: Differentiate the interpolating polynomial at nodes.

On a per element level, this approach is identical to the finite element
formulation with free-flux (unspecified) boundary conditions.

To impose coupling between elements, we require Direct Stiffness
Summation (DSS) for the spectral element method or ??? for the
Discontinuous Galerkin method.
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Finite Element Method

The derivatives of the flux interpolant are used for updating the pointwise
values of the state. However, there must be a mechanism for coupling

elements.
€T ‘( ______ L DSS: Average 1 Unclear how
J22 derivatives on elements should
shared boundary Tj3 ‘ _— be coupled in

nodes. Natural differential form

method for
coupling —hence why DG
elements. is typically

formulated for a
conservation law,
where coupling is
via Riemann
solver
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Flux Reconstruction Method Suynhz00)

Fint The interface flux polynomial is 1 at one element interface, O
........ at the other interface and approximates 0 throughout the
element.
g(z)
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Flux Reconstruction Method Suynhz00)

Fint The flux reconstruction approach motivates the notion of a
........ discrete derivative which is consistent with the
discontinuous Galerkin formulation.
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Here ¢ denotes the interpolating polynomial through
interior nodes. The value at the top and bottom of the
element can be obtained via a central approximation:
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Non-Conservative DG

The notion of a “DG derivative operator” from the flux reconstruction method
allows DG to be applied to the non-conservative equations of motion. Since the

density evolution equation is conservative, the flux reconstruction approach
reduces to DG in this case.
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The Need for Staggering

Linearized vertical velocity equation:

Unstaggered grid
(Arakawa A-grid) 8_?1} + g p — 1@ =0
K+ /0 sy ot p 0z

(= ;A

Density perturbation Pressure perturbation
(affects magnitude) (affects propagation)

lgnore for now ]

Discretization on the unstaggered grid:

0 1 — Dp_
_’w+ (pk+1 Pk 1>:O

3/2 Rk+1 — Zk—1
1 ............
12w Supports 2Ax mode! ) Result holds for ALL A-Grid
Numerical Methods, including
arbitrary order FEM!
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Vertical Staggering

Linearized vertical velocity equation:

Staggered grid
(Like an Arakawa C-grid)
ow ¢ 1 Op
E"‘Zp"‘ :3_20 K+ /2 e
P p Uz G ———
K112
Discretization on staggered grid: :
_ k32— P
% _|_ i (pk+1/2 pk—l/Z) — 0 T u
ot P\ Zk+1/2 — Zk—1/2 S I ____ v
No separation of odd/even modes in w/p. k:;z ____________ ﬁ
Still can get computational mode in other k32 ————— P
variables depending on staggering. .
3/2
Also see: 1;2 """"""
* Tokioka (1978) ’

* Arakawa and Moorthi (1988)
* Arakawa and Konor (1996)
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Vertical Staggering

There are many possible choices of vertical

_ _ Staggered grid
staggering besides the one shown above: (Like an Arakawa C-grid)
(I LII LIS 117473
* For non-hydrostatic system there are 5 K}m ____________
prognostic variables. K172
 We can choose any two thermodynamic _
variables from p, p, T, 0, etc. 32— P
A R u
: k12— P
Some have computational modes. Others do not. P u
k12 ————
* Accurate representation of waves (acoustic, szlfz """""" ;
inertia-gravity, Rossby) only exhibited by certain .
choices of staggering and prognostic variables. -
1 ............
e Analyzed by Thuburn and Woollings (2005) in V12 77777777777

three coordinate systems.
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Vertical Staggering

Thuburn and Woollings (2005), Thuburn (2006) and Toy and Randall (2006) showed
that there are few choices of vertical staggering which have optimal wave-
propagation properties. In z-coordinates, there are two options:

(w0,uvp) grid (wO,uvp)" grid
K+ [ il Vertical velocity and potential K+ [ il
K ------mmmm-- temperature at model interfaces, K ------mmmm--
K12 ——— @ velocity and pressure at model K12 ———
. levels. Conservation of mass very .
32— wh difficult under this formulation! 32— wo
o up - / o up
k12— w0 / . _ . \ k12— wb
S up Vertical velocity and potential S up
k12 ———— wib temperature at model interfaces, k12 ————— wi
k-1 -----mmm-——- up : . k-1 -----mmm-——- up
iy W 0 velocity and density at model iy W 0
. levels. Exner pressure used for .
buoyancy term. Conservation of
3’;2 ____________ mass easy under this 3’;2 ____________
ion!
12 =z \ formulation! / 12 =z
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Non-Conservative DG

By using the differential form of the FEM in conjunction with the Charney-Phillips
staggering then yields a generalized vertical discretization which supports
arbitrary order-of-accuracy.
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The Hybrid Finite Element Method

Since both the spectral element method and discontinuous Galerkin
method can be formulated in differential form, one can apply computed
derivatives to nodes stored on the dual grid.

j?%"'"
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The Hybrid Finite Element Method

Hybrid finite element methods provide a natural extension of
the Charney-Phillips grid to finite element methods.

Advantage: These methods support arbitrary order of
accuracy and allow for practically any choice of vertical
variables. In conjunction with improved horizontal-vertical
coupling, this approach can improve pressure gradient errors.

Advantage: Hydrostatic balance can be captured more
effectively by a high-order reconstruction (and so does not

require the use of a background reference profile in non-
hydrostatic models).

Advantage: With a centered interface flux this scheme is
mimetic (energy conserving) at all orders of accuracy.
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Inertia-Gravity Wave Test

Fifth-order HFEM vertical discretization, Strang splitting, no reference profile
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UMJS Baroclinic Instability

-
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Pressure Gradient Errors

As expected, the high-order

treatment of the vertical also

greatly improved errors due
to the pressure gradient
force by more than two
orders of magnitude.

Additional improvement can
also be obtained by
combining this scheme with
a high-order IMEX method
for timestepping.
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Next: 2D H

27d/3rd order hybrid finite-

element methods in 2D. The
outer “box” depicts a single

finite element.

Degrees of freedom are
stored at the nodes
indicated, with locations

dependent on the particular

prognostic variable.

Also see talks by Colin Cotter,

Thomas Melvin and
Jemma Shipton.
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Figure: ‘x’ denotes the nodal location of
density and potential temperature.
Arrows denote locations of velocities.
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Other Interests / Open Problems

Topics | would love to discuss further:

* Analysis of hybrid/mixed finite element methods and removal
of the “spectral gap” via basis modification.

* Derivation of (semi-)analytical solutions to the linearized Euler
equations about an isothermal background (mountain waves
and inertia-gravity waves).

* Development of a vector hyperviscosity operator for
discontinuous Galerkin methods.

* Conservative and monotonic remeshing between a finite-
element mesh to an arbitrary finite-volume grid.

e Adaptive and static mesh refinement strategies
(see Jared Ferguson’s talk)
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