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Tempest Framework 
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An Earth-system modeling framework 
formulated using an explicitly evaluated 
horizontal discretization and implicitly 
evaluated vertical discretization (HEVI). 
 
Built using block-based refinement 
analogous to Colella and Berger (1989).  
Geometry is included via Riemannian 
metric terms. 
 
Allows for effectively arbitrary (and 
nested) quadrilateral structures in the 
horizontal, with current support for 
Cartesian and Cubed-Sphere grids. 
 
Numerical methods formulated 
independent of grid. Figure:  A cubed-sphere refinement 

patch over California. 



HARDCore Dynamics 

High-order Adaptively Refined Dynamical 
Core (HARDCore). 
 
Currently supports Spectral Element (SE), 
Discontinuous Galerkin (DG) and Flux 
Reconstruction (FR) type methods with 
arbitrary order-of-accuracy in horizontal 
and vertical.  Goal is to also support 
upwind and central Finite Volume (FV) 
methods. 
 
Non-hydrostatic dynamics with the full set 
of fluid equations, with additional support 
for a spatially-variable reference profile. 
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Figure:  A cubed-sphere refinement 
patch over California. 



Two New Technologies 

Non-conservative discontinuous Galerkin 

A new approach to a high-order vertical discretization 
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Motivation: Spurious Vertical 

Velocity 
Figure:  An initially steady 
atmosphere (no initial 
velocities) with sharply 
varying bottom 
topography leads to 
spurious vertical velocities 
because of inaccuracy in 
the evaluation of the 
horizontal pressure 
gradient term.  Here the 
vertical velocity errors are 
on the order of 0.5 cm/s. 

Vertical Velocity (w) 
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Motivation: Vertical Stratification 

 
Figure:  A low-order vertical 
coordinate does a poor job of 
resolving hydrostatic balance 
due to approximately 
exponential decay of the 
pressure and density terms. 
 
Most non-hydrostatic 
numerical models instead use 
a “reference profile” – a 
spatially variable steady 
background state – which is 
subtracted from the equations 
of motion. 
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Finite-element methods are a common framework for high-order methods.  

A typical continuous basis using the spectral element method is situated on 

Gauss-Lobatto nodes.  A discontinuous basis is defined on Gauss nodes. 

Nodal Finite Element Method 

Gauss-Lobatto nodes 
within an element 
(model interfaces) 
 
(usual starting point for 
Spectral Element Method) 

Gauss nodes within an 
element (model levels) 
 
(usual starting point for 
Discontinuous Galerkin 
Method) 
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Each node is then associated with a unique basis function which is 1 at a 

particular node and 0 at all other nodes. 
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Nodal Finite Element Method 



Finite Element Method 
Examining the 1D conservation 

equation, one can obtain a differential 

formulation of the finite element 

method on nodes. 

Step 1:  Calculate fluxes Fj at each nodal location xj. 
 
Step 2:  Fit an interpolating polynomial through nodal fluxes. 
 
Step 3:  Differentiate the interpolating polynomial at nodes. 

On a per element level, this approach is identical to the finite element 

formulation with free-flux (unspecified) boundary conditions. 

 

To impose coupling between elements, we require Direct Stiffness 

Summation (DSS) for the spectral element method or ??? for the 

Discontinuous Galerkin method. 
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Finite Element Method 
The derivatives of the flux interpolant are used for updating the pointwise 

values of the state.  However, there must be a mechanism for coupling 

elements. 

DSS: Average 
derivatives on 
shared boundary 
nodes.  Natural 
method for 
coupling 
elements. 

Unclear how 
elements should 
be coupled in 
differential form 
 
– hence why DG 
is typically 
formulated for a 
conservation law, 
where coupling is 
via Riemann 
solver 
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Flux Reconstruction Methods 

The interface flux polynomial is 1 at one element interface, 0 
at the other interface and approximates 0 throughout the 
element. 

Central flux: 

Local Lax-
Friedrichs flux: 

(Huynh 2007) 
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Flux Reconstruction Methods 

The flux reconstruction approach motivates the notion of a 
discrete derivative which is consistent with the 
discontinuous Galerkin formulation. 

Here      denotes the interpolating polynomial through 
interior nodes.  The value at the top and bottom of the 
element can be obtained via a central approximation: 

(Huynh 2007) 
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Non-Conservative DG 
The notion of a “DG derivative operator” from the flux reconstruction method 
allows DG to be applied to the non-conservative equations of motion. Since the 
density evolution equation is conservative, the flux reconstruction approach 
reduces to DG in this case. 

Explicit Timestepping Implicit 
Timestepping 
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The Need for Staggering 

Unstaggered grid 
(Arakawa A-grid) 

Linearized vertical velocity equation: 

Density perturbation 
(affects magnitude) 

Pressure perturbation 
(affects propagation) 

Ignore for now 

Discretization on the unstaggered grid: 

u, p 

u, p 

u, p 

Supports 2Δx mode! Result holds for ALL A-Grid 
Numerical Methods, including 

arbitrary order FEM! 
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Vertical Staggering 
Linearized vertical velocity equation: 

Discretization on staggered grid: 

No separation of odd/even modes in w/p.  
Still can get computational mode in other 
variables depending on staggering. 
 
Also see: 
• Tokioka (1978) 
• Arakawa and Moorthi (1988) 
• Arakawa and Konor (1996) 

Staggered grid 
(Like an Arakawa C-grid) 

p 

u 

p 

u 

p 

u 

p 
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Vertical Staggering 
There are many possible choices of vertical 
staggering besides the one shown above: 
 
• For non-hydrostatic system there are 5 

prognostic variables. 
• We can choose any two thermodynamic 

variables from ρ, p, T, θ, etc. 
 

Some have computational modes.  Others do not. 
 
• Accurate representation of waves (acoustic, 

inertia-gravity, Rossby) only exhibited by certain 
choices of staggering and prognostic variables. 
 

• Analyzed by Thuburn and Woollings (2005) in 
three coordinate systems. 

p 

u 

p 

u 

p 

u 

p 
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Staggered grid 
(Like an Arakawa C-grid) 



Vertical Staggering 
Thuburn and Woollings (2005), Thuburn (2006) and Toy and Randall (2006) showed 
that there are few choices of vertical staggering which have optimal wave-
propagation properties.  In z-coordinates, there are two options: 

w θ 

u p 

w θ 

u p 

w θ 

u p 

w θ 

(wθ,uvp) grid 

w θ 

u ρ 

w θ 

u ρ 

w θ 

u ρ 

w θ 

(wθ,uvρ)Π grid 
Vertical velocity and potential 

temperature at model interfaces, 
velocity and pressure at model 

levels.  Conservation of mass very 
difficult under this formulation! 

Vertical velocity and potential 
temperature at model interfaces, 

velocity and density at model 
levels.  Exner pressure used for 

buoyancy term.  Conservation of 
mass easy under this 

formulation! 
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Non-Conservative DG 
By using the differential form of the FEM in conjunction with the Charney-Phillips 
staggering then yields a generalized vertical discretization which supports 
arbitrary order-of-accuracy. 

w θ 

u ρ 

w θ 

u ρ 

w θ 

u ρ 

w θ 

(wθ,uvρ)Π grid 

Explicit Timestepping Implicit 
Timestepping 
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The Hybrid Finite Element Method 
Since both the spectral element method and discontinuous Galerkin 

method can be formulated in differential form, one can apply computed 

derivatives to nodes stored on the dual grid. 
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Hybrid finite element methods provide a natural extension of 

the Charney-Phillips grid to finite element methods. 

 

Advantage:  These methods support arbitrary order of 

accuracy and allow for practically any choice of vertical 

variables.  In conjunction with improved horizontal-vertical 

coupling, this approach can improve pressure gradient errors. 

 

Advantage:  Hydrostatic balance can be captured more 

effectively by a high-order reconstruction (and so does not 

require the use of a background reference profile in non-

hydrostatic models). 

 

Advantage:  With a centered interface flux this scheme is 

mimetic (energy conserving) at all orders of accuracy. 

The Hybrid Finite Element Method 

20 Paul Ullrich (UC Davis) Arbitrary-order Hybrid Finite-Element...  April 10, 2014 



Inertia-Gravity Wave Test 
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Fifth-order HFEM vertical discretization, Strang splitting, no reference profile 



UMJS Baroclinic Instability 
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The test case is a different 
implementation of the 
Jablonowski Williamson 
(JW) baroclinic instability 
described in Ullrich et al. 
(2013). 
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Pressure Gradient Errors 
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As expected, the high-order 
treatment of the vertical also 
greatly improved errors due 
to the pressure gradient 
force by more than two 
orders of magnitude. 
 
Additional improvement can 
also be obtained by 
combining this scheme with 
a high-order IMEX method 
for timestepping. 



Next: 2D HFEM 
(a) (b) 

(c) (d) 

2nd/3rd order hybrid finite-
element methods in 2D.  The 
outer “box” depicts a single 
finite element. 
 
Degrees of freedom are 
stored at the nodes 
indicated, with locations 
dependent on the particular 
prognostic variable. 
 
Also see talks by Colin Cotter, 
Thomas Melvin and 
Jemma Shipton. 

Discontinuous 
Galerkin 

Spectral 
Element 

HFEM-C HFEM-B 

Figure:  ‘x’ denotes the nodal location of 
density and potential temperature.  
Arrows denote locations of velocities. 
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Other Interests / Open Problems 

Topics I would love to discuss further: 
 

• Analysis of hybrid/mixed finite element methods and removal 
of the “spectral gap” via basis modification. 
 

• Derivation of (semi-)analytical solutions to the linearized Euler 
equations about an isothermal background (mountain waves 
and inertia-gravity waves). 
 

• Development of a vector hyperviscosity operator for 
discontinuous Galerkin methods. 
 

• Conservative and monotonic remeshing between a finite-
element mesh to an arbitrary finite-volume grid. 
 

• Adaptive and static mesh refinement strategies 
 (see Jared Ferguson’s talk) 
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Thank You! 


