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Numerical Simulation of Tsunami Events
Some Requirements

A numerical algorithm for tsunami simulation should . . .

• accurately represent wave propagation
and indundation at the coast,

• be well-balanced (preserves the still
water steady state),

• be mass conservative,
• be robust (non-oscillatory, positive, . . . ),

high order of minor priority,
• be computationally efficient (small

stencil, . . . ).
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The Governing Equations
Shallow Water Equations

• system of conservation laws with source term (balance laws):
∂U

∂t
+∇ · F(U) = S(U) in Ω× T ⊂ R2 × R+

with U = (φ, φu)T , φ = gh, subject to initial and boundary conditions

• flux and source defined as

F(U) =

(
φu

φu ◦ u+ 1
2φ

2I

)
S(U) = −

(
0

Sb + Sr + Sf + Sv

)

Sb = φg∇b bathymetry

Sr = f(k × φu) Coriolis force

Sf = −γ2u‖u‖/φ1/3 bottom friction

Sv = −ν∇(φu) eddy viscosity

H(t,x)

b(t,x)

h(t,x) = H − b

x

z
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Space Discretization
DG Formulation & Basis Function Representation

• Galerkin ansatz (residual orthogonal to some function space V ):∫
Ω

(
∂U

∂t
+∇ · F(U)− S(U)

)
ψ dx = 0 ∀ψ ∈ V

• weak DG formulation (integration by parts):∫
Tω

(
∂Uh

∂t
− Fh · ∇ − Sh

)
ψω dx = −

∫
∂Tω

ψωF
∗
h · ndσ

Representation on reference element:
• nodal approach based on electrostatics / Fekete points
• local solution represented by Lagrange polynomials ψi ∈ Vh of degree p

U(ξ, t) =
r∑

i=1

U(ξi, t)ψi(ξ) =
r∑

i=1

Ũi(t)ψi(ξ)

following GIRALDO ET AL. [2002], GIRALDO [2006]
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Time discretization
Runge-Kutta Timestepping with Limiting

SSP Multistage scheme:

U
(0)
h = Un

h

U
(i)
h = ΛΠh

{
i−1∑
l=0

αilU
(l)
h + βil∆t

nHh(U
(l)
h )

}
for i = 1 . . . k + 1

Un+1
h = U

(k+1)
h

Intermediate solution limited with ΛΠh after each stage:
• TVB corrected minmod function [COCKBURN AND SHU, 1998]:

m̄(ui,x, ūi+1 − ūi, ūi − ūi−1)

• limiting in conservative (h, hu) vs. hydrostatic variables (h+ b, hu)
• positivity preservation [XING ET AL., 2010]:

Ũn(x, y) = θ
(
Un(x, y)− Un

)
+ Un with θ = min

(
1,

φn

φn −minx{φn(x)}

)
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2D Test Case
Quasi Stationary Vortex Advected by Constant Background Flow

• using grid library amatos

(conforming elements,
refinement by bisection)

• linear elements, no limiting
• simple gradient based error

indicator
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1D Results
Oscillatory Flow in a Parabolic Bowl

• domain [−5000, 5000] with
b(x) = 10(x/3000)2

• 200 cells, ∆t = 1.0, CFL ≈ 0.2

• limiting in (h, hu)

• analytical solution by Thacker (1981):

h(x, t) + b(x) = h0 −
B2

4g
(1 + cos(2ωt))− Bx

2a

√
8h0

g
cosωt,

ω =
√

2gh0/a, B = 5

• initial momentum at t = 0 is set to zero
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t = 0

t = 2000

t = 1000

t = 3000
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1D Results
Tsunami Runup onto a Sloping Beach

Benchmark problem 1 from “The Third International Workshop on
Long-Wave Runup Models” (2004).
http://isec.nacse.org/workshop/2004_cornell/bmark1.html

• uniformly sloping beach with
b(x) = 5000− 0.1x

• prescribed initial surface
elevation and momentum with
(hu)(x, 0) ≡ 0

• domain [−500; 50000], 1010 cells
• ∆t = 0.05, CFL ≈ 0.2

• limiting in (h, hu)
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1D Results
Tsunami Runup onto a Sloping Beach

t = 0

t = 175

t = 160

t = 220
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Wellbalancing with Wetting and Drying
How to Discretize a Semi-dry Cell?

Assuming a fixed spatial grid (no moving grid points), piecewise linear DG
discretization:

• Tsunami Runup at t = 50

• limiting in (h, hu)

?
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Wetting & Drying
Solution Approach

Well-balancing with wetting/drying:
• distinguish between “flood type” and

“dam-break type” cells
• neglect gradient in surface elevation in

flood-type cells
• inner cell redistribution of tendencies to

wet nodes in flood-type cells
• limiting only in fully wet cells, adjustment

of negative heights

flood type

dam-break type
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1D Results
Lake at Rest

• domain [0, 1] with periodic
boundary conditions

• still water u ≡ 0

• 50 cells, ∆t = 0.002, CFL ≈ 0.3,
tmax = 20

• limiting in (h+ b, hu)

Test initialized with zero momentum
field:

. . . with random deviations in the
momentum field of the order 10−8:
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Parallel AMR for Triangular Grids
Challenges for Grid Refinement and Coarsening

• strong, dynamically adaptive refinement (to capture solution and
geometrical details etc.)

• frequent re-meshing of large parts of the grid
• substantial change of problem size during simulation
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Parallel AMR for Triangular Grids
Challenges for Parallelisation

• trend to multi-/manycore; multiple layers of parallelism
• dynamic load balancing due to remeshing and varying computational

load
• goal: retain locality properties (partitioning)
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Structured Triangular Meshes
“Newest Vertex Bisection” Refinement & Sierpinski Curves

• recursively structured triangular grids (newest vertex bisection)
• fully adaptive grid described by a corresponding refinement tree
• element orders (tree and grid cells) defined by Sierpinski space-filling

curves
• minimum memory requirements
→ triangle strips as data structure

• exploit locality properties for cache and parallel efficiency
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Test Scenario
Adaptive Tsunami Simulation with Finite Volumes

• basic shallow water model, Finite Volume discretisation
• augmented Riemann solver (George, 08) provided by GeoClaw
• dynamically adaptive grid with up to 100 Mio grid cells
• refinement/coarsening and load balancing after each time step
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Summary

Summary
• tsunami modeling on adaptive triangular grids
• discretization by discontinuous Galerkin method
• wetting & drying for DG (positivity vs. well-balancing)
• parallel adaptive triangular grids (Sierpinski SFC)
• locality properties for cache and parallel efficiency

Outlook
• further development of wetting/drying treatment (positivity AND

well-balancing)
• extension to 2D, realistic tsunami simulations
• implementation into parallel framework for HPC
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