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Motivation

» Mimetic properties over orography
» using mimetic horizontal discretisation in the vertical
» Long time-steps

» suitable for massively parallel
» suitable for unstructured grids
» simpler than SISL (semi-implicit, semi-Lagrangian)
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Representing Mountains

For numerous reasons in
meteorology the cells should line
up in columns

EEEREIARNIARIIA NGRS



Representing Mountains

For numerous reasons in
meteorology the cells should line
up in columns

.. the mesh is non-orthogonal
over orography

EEEREIARNIARIIA NGRS



Representing Mountains

For numerous reasons in
meteorology the cells should line
up in columns

.. the mesh is non-orthogonal
over orography

*p Usual approach: orthogonal

U, prognostic velocity variables u, v,
% [0 w in horizontal and vertical
directions

EEEREIARNIARIIA NGRS



Representing Mountains

For numerous reasons in
meteorology the cells should line
up in columns

.. the mesh is non-orthogonal
over orography

*p Usual approach: orthogonal

U, prognostic velocity variables u, v,
% [0 w in horizontal and vertical
directions

.. find % co-located with u
without knowing p at this
altitude (eg Klemp, Zangl)

EEEREIARNIARIIA NGRS



Representing Mountains

For numerous reasons in
meteorology the cells should line
up in columns

.. the mesh is non-orthogonal
over orography

*p Usual approach: orthogonal

U, prognostic velocity variables u, v,
% [0 w in horizontal and vertical
directions

.. find % co-located with u
without knowing p at this
altitude (eg Klemp, Zangl)

— pressure gradients not curl free
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Alternative: non-orthogonal prognostic variables
(covariant)

d u-d . . . .
Following horizontal discretisa-
K tions on non-orthogonal grids:
Prognostic variables: u- d
where df = x; — Xx;
n — curl free pressure gradients

— no spurious generation of
vorticity
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Non-orthogonal prognostic variables (covariant)

Need mass flux u,, = u-n

in continuity equation

Requires operator H from space of all
ugs to space of all u,s.

Uy, = Hug

(following Thuburn, Dubos, Cotter, 2014)

» First reconstruct full velocity at face f
from ug at the surrounding faces, f':

u="7"" Z dpyApug » Next take component in
I direction n and correct the
component in direction d so
where 7= dpdf Ap that the result is exact on
I an orthogonal face:

Least squares fit which reconstructs a . a) (4.4
uniform velocity field Un = un+ (ud —u ) (n ' )
The resulting H is asymmetric which violates energy conservation
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Results

Resting stratified atmosphere over a steep mountain
» should remain stationary

» potential temperature contours should remain horizontal
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Results

Resting stratified atmosphere over a steep mountain
» should remain stationary
» potential temperature contours should remain horizontal

Op/0x version, implicit gravity waves H version, implicit gravity waves
At=100s. Maximum NAt=2 At=100s. Maximum NAt=2

i
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Maximum Spurious Velocity
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Energy Conservation

normalised energy change
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GraVity—WaveS over Orography At=40s, uAt/Azx ~ 1, w every .05m/s

Op/Ox version
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Semi-implicit acoustic and gravity waves

For structured, lat-lon grid models, this is usually done by
» treating the z coordinate direction differently

> expressing variables as mean and perturbation quantities
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Semi-implicit acoustic and gravity waves

For structured, lat-lon grid models, this is usually done by
» treating the z coordinate direction differently
» expressing variables as mean and perturbation quantities

Neither of these are necessary:
Starting from the Euler equations:

Momentum ou/0t+u-Vu+20xu =g-—c,0VII
Continuity Op/Ot+u-Vp+pV-u =0

Potential temperature 00/0t+u-Vo =0

State =" = Rpf/po
where potential temperature 0="T (po/p)"

Exner function of pressure I = (p/po)”
In order to treat acoustic and gravity wave implicitly, these must ALL
be combined to form a linearised equation for II
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Semi-implicit acoustic and gravity waves

Prognostic variables:
u, =u-n velocity normal to each cell face
0 at cell centre n

11 at cell centre

b,

Un

Overview:
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Semi-implicit acoustic and gravity waves

Prognostic variables:
u, =u-n velocity normal to each cell face
0 at cell centre n

11 at cell centre

b,
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Overview:
» Substitute 6 equation into momentum equation

» Substitute u,, into continuity equation
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Semi-implicit acoustic and gravity waves

Prognostic variables:
u, =u-n velocity normal to each cell face
n

0 at cell centre 4
II at cell centre —
un
ZL
S s
Overview:

» Substitute 6 equation into momentum equation
» Substitute u,, into continuity equation

» Use equation of state to replace p with II in continuity equation:
— Helmholtz equation for II
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Substitute € into momentum equation

Rearrange 6 equation to give 671 in terms of u*! (15! order in time
for brevity):

n+1 _gn _ . n
90/0t +u-Vh=0 — 0 =0"—Atu-Vo
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Substitute € into momentum equation

n+1 (

Rearrange 6 equation to give "1 in terms of u” 1%t order in time

for brevity):
gntt =67 — At u-Vo"

/0t +u-V6=0 — — 0" — At (ut)" - VO" — At urtV,0n
where ut =

—(u-f)h
va(e

)

5> 5,
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Substitute # into momentum equation

Rearrange 6 equation to give 671 in terms of u*! (15! order in time
for brevity):
ontl =07 — At u-Vo"
20/t +u-Vo=0 — — 0" — At (ub)T- VO — At ur IV, 00
where u' =u-— (u-h)n
V.0 =(V0)-n

Substitute into the c¢,0VII term of the momentum equation and take
dot product with fi to get u”*! in terms of I1"*1:
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Substitute # into momentum equation

Rearrange 6 equation to give 671 in terms of u*! (15! order in time
for brevity):
ontl =07 — At u-Vo"
20/t +u-Vo=0 — — 0" — At (ub)T- VO — At ur IV, 00
where u' =u-— (u-h)n
V.0 =(V0)-n

Substitute into the c¢,0VII term of the momentum equation and take
dot product with fi to get u”*! in terms of I1"*1:

n+1 n
Uy, — U

A7 + (.)"n=g-
— ¢ (0" = At (uh)™ - (VO)" — At upt'V,0") VI

i
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Substitute # into momentum equation

Rearrange 6 equation to give 671 in terms of u*! (15! order in time
for brevity):
ontl =07 — At u-Vo"
20/t +u-Vo=0 — — 0" — At (ub)T- VO — At ur IV, 00
where u' =u-— (u-h)n
V.0 =(V0)-n

Substitute into the c¢,0VII term of the momentum equation and take
dot product with fi to get u”*! in terms of I1"*1:

n+1 n
Uy, — U

o )T

n=g-n
— ¢ (0" = At (uh)™ - (VO)" — At upt'V,0") VI

Rearrange to get all terms involving u”*! on the LHS (linearise by
replacing 11" ! with II" on the LHS):

EEEREIARNIARIIA NGRS



Substitute # into momentum equation

uz+1 —un .

AL + (.)'-n=g-
— ¢ (0" = At (uh)™ - (VO)" — At upt'V,0") V11!

Rearrange to get all terms involving u”*! on the LHS (linearise by
replacing TI" ™! with II" on the LHS):

uptt (1= A2V, 0"V II") = upp — At ()" -+ Atg - fa
_Ate, (On ~ AL (uh)" (vg)n) v, I+t
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Substitute # into momentum equation

n+l _ ., n
G Z% 4 ()" h=g
At (u

At
— (0" — B (V)" — At urtv,0m) V0

Rearrange to get all terms involving u”*! on the LHS (linearise by
replacing TI" ™! with II" on the LHS):

upt™ (1= A, V0"V, I1") = ut — At (..)" - b+ Atg - #
_Ate, (9n ~ AL (uh)" (vg)n) v, I+t
and write as:
W = G (o~ At T,

Substitute u"*! into the continuity equation to get p"*! in term of
Hn+1
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Final Construction of Helmholtz equation

untt = G (v — Ate, 'V, 11"

Substitute u*! into the continuity to get p"*! in term of II"*!
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Final Construction of Helmholtz equation

untt = G (v — Ate, 'V, 11"
Substitute u*! into the continuity to get p"*! in term of II"*!
pn+1 _ pn

A T (w-Vp)" +p"V - (G (v — Atc,0'V,IT" 1)) =0
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Final Construction of Helmholtz equation

untt = G (v — Ate, 'V, 11"
Substitute u*! into the continuity to get p"*! in term of II"*!

7

n+1 _
E e (@) + "V (G (0 = Aty 0V, 1)) = 0
Use equation of state to replace p" ™t with 171
pn—i-l T} Hn+1

(Rﬁ/po)ﬁ ~ (po/R)%* p0-6 /904

2r—1
K—1

where U = (pz)
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Final Construction of Helmholtz equation

untt = G (v — Ate, 'V, 11"

Substitute u*! into the continuity to get p"*! in term of II"*!
(V)" 4"V - (G (u — Ate, 0V, TI")) =0
Use equation of state to replace p" ! with II"*1:

pn+1 _ \IJ Hn+1

(Rﬁ/po)ﬁ ~ (po/R)O‘4 06 /904

2r—1
Kk—1

where U = (pé)

oI — eI
% e —

7 +(u-Vp)" +p"V - (G (v — Ate,0'V,II")) =0
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Final Construction of Helmholtz equation

untt = G (v — Ate, 'V, 11"

Substitute u*! into the continuity to get p"*! in term of II"*!
———+ (- Vp)" 4+ p"V - (G (v — At V,II" ) =0
Use equation of state to replace p" ! with II"*1:

pn+1 _ \IJ Hn+1

(Rﬁ/po)ﬁ ~ (po/R)0'4 06 /904

2r—1
k—1

where U = (pé)

oI — eI
% e —

7 +(u-Vp)" +p"V - (G (v — Ate,0'V,II")) =0

Solve to find II"*! in terms of II"” then back substitute to get p"*1,
utl and 97 +!

" .
This is VERY convergent and allows long time steps w.r.t. gravity
and acoustic wave speeds ... but what about advection ...

EEEREIARNIARIIA NGRS



Sub time-steps for advection

» To circumvent time-step restriction due to advection
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Sub time-steps for advection

To circumvent time-step restriction due to advection
As an alternative to SISL (semi-implicit, semi-Lagrangian)

Crank-Nicolson for implicit terms (acoustic and gravity waves)

vV v v v

Sub-steps using explicit 3rd order Runge-Kutta for advection
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To circumvent time-step restriction due to advection
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Sub-steps using explicit 3rd order Runge-Kutta for advection
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Sub time-steps for advection

To circumvent time-step restriction due to advection

As an alternative to SISL (semi-implicit, semi-Lagrangian)
Crank-Nicolson for implicit terms (acoustic and gravity waves)
Sub-steps using explicit 3rd order Runge-Kutta for advection

Combined with Strang carry-over for 2nd-order accuracy

vV v.v. v v Yy

Linear stability analysis does not reveal any time-step restrictions
(not shown)
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Hydrostatic Mountain Waves (To test long time-steps)

Linear analytic solution Implicit gw, At = 20s, Co = 0.2, NAt = 0.4

T T f Y T T
000 3000 20000 -10000 0 10000 20000 30000 40000

Implicit gw, At = 100s, Co =1, NAt =2
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+2, At = 500s, Co = 2.5, NAt = 10

~10000 0 10000 20000 30000 40000

Stable at long time-steps but accuracy is lost because 8 advection is
implicit rather than sub-stepped - needs sorting
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Conclusions

» Covariant velocity components over orography

> curl-free pressure gradients
> better stable stratification over orography
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Conclusions

» Covariant velocity components over orography

> curl-free pressure gradients
> better stable stratification over orography

» Semi-implicit treatment of acoustic and gravity waves

without treating z-direction differently
without an explicitly defined reference profile
suitable for unstructured in the vertical
allows time-step independent of stratification

vVYyVvVvyly
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Conclusions

» Covariant velocity components over orography

> curl-free pressure gradients
> better stable stratification over orography

» Semi-implicit treatment of acoustic and gravity waves

without treating z-direction differently
without an explicitly defined reference profile
suitable for unstructured in the vertical
allows time-step independent of stratification

vVYyVvVvyly

» Sub time-steps for advection

> allows arbitrary long time-steps for the implicit terms
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