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FIRST THEME: Equatorial Trapping is
Controlled by BOTH Lamb’s Parameter and
Zonal Wavenumber
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€ = |LAMB’S PARAMETER]

Q) =211/84,600s, a = earth’s radius
g =9.8m/s H = equivalent depth

s = LONGITUDINALWAVENUMBER,
an INTEGER



Equatorial Beta-Plane: Asymptotic
Approximation by Hermite Functions

. Orthodoxy: vy, ~ Wn(e?u),
Wn(y) = exp(=[1/2]y*)Hnp(y)

- Boyd (J. Atmos. Sci., 1985) argued that for
Rossby waves,
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- Boyd & Zhou (J. Atmos. Sci., 2008) extended
to Kelvin waves

- Argument applies to SPHERICAL HARMON-
ICS & PROLATE SPHEROIDAL FUNCTIONS as
well as HOUGH FUNCTIONS




Prolate Spheroidal Illustration
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Barotropic (e = 0) Kelvin Waves

High zonal wavenumber Kelvin are equatorial
modes even for e =0



Barotropic Kelvin, &=0, s=20
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Boyd-Zhou Kelvin approximation is

b~ (1-u?)*'2 exp((s/2)u?)xexp(—(1/2)Ve + s2u?)

(u = sin(latitude))
Kelvin & approx. are solid black [graphically
indistinguishable]
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Uniform Validity
- New approximation is uniformly valid for

Vs +e>>1

(shaded in figure)

- Though not strictly valid when both s and €
are O(1), it is not a bad approximations
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Frontogenesis,

Steady Wave

Propagation

>

Breaking & Bores

SECOND THEME: NONLINEAR KELVIN

DYNAMICS

KELVIN MODE

CCB Scenario: Cnoidal/Corner/Breaking

Y Breaking o
= Inviscid Burgers Eq
TE:_ Boyd ‘80,92,98
<
Corner
C Zhou-Boyd ‘08
Cnoidal\Soliton

NV, RLW Eq

Boyd ‘84,GY Chen-Boyd '01
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Definition 1 (Corner Wave) A corner wave is a
steadily traveling nonlinear wave in which the

wave height function u(x —ct) has a maximum
which is a slope discontinuity.

Table 1: Examples of Systems with Corner Waves and the CCB Scenario
Eqg. or Wave Name |

Equations
Non-equatorial
Equatorial Waves Ki +KKy =y {Y(t)ei" + ?(t)e*i"};
Barotropic Mode Yy = —yK(x =1,t)
Equatorial Waves 3 coupled PDES in (x,t)

Baroclinic Mode

Resonant Triads, Ut + Uy = 2Re (ikab exp(—ikx));

One Nondispersive as = —iwgbiiy; by = —iwpatiy
Equatorial Kelvin 4 coupled PDEs in x,t
(4-mode Model)

Equatorial Kelvin
(Shallow Water)

3 coupled PDEs in x, y,t
(Shallow Water Egs.)
Non-equatorial

Euler equations in x, z

Surface Irrotational
Water Waves
Boundary Waves
on Vortex Patches
Camassa-Holm
Ostrovsky-Hunter
Gabov/
Shefter-Rosales
Whitham

Two-space-dimensional Euler equations (x, y)

Ut — Usxt + (2K +3U — 2Uxx)Ux — Ul xxx = 0
(U +UUx)y =U

(Ue + Ulx)y = Jg 7 cOs(x — ) u(y)dy

(Ut + UUx)y = pb? X

Ju— g et Ly |
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Corner waves for different values of Lamb’s
paramter €

CORNER WAVE is a POINT SINGULARITY
NOT a CREASE
NOT a CONE

¢(x,equator) / Py s=1

Longitude
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Kelvin front CURVES because of resonance
with gravity waves

b, t=6.6667
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HOUGH POINT CLOUDS INTO POLYNOMIALS

Hough’ spherical harmonic Galerkin algorithm,
with Longuet-Higgin’s improvements, is very
fast and spectrally accurate.

Mode classification is NOT a SLAM DUNK

Galerkin method generates POINT CLOUD: eigen-
values at discrete €.

Desired: CONTINUOUS BRANCHES

Other complications:

Kelvin mode = GRAVITY WAVE as € — 0O

Yanai mode is “MIXED ROSSBY-GRAVITY"

Number of interior zeros may change with €
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Making Friends with Special Functions

CONCEPTUAL, QUALITATIVE:

Never-Out-of-Date Paradigms: Theorems,
Asymptotics & Graphs

NUMERICAL:
Ancient Paradigm: Tables

Newer Paradigm: Perturbation Series & Cheby-
shev Series

Emerging Paradigm: Matlab Code

Spherical harmonic Galerkin discretizations
are tridiagonal (e is eigenvalue) or otherwise
very sparse. Power method allows very fast
computation of a chosen mode for arbitrary
parameter values without the need to compute
all other modes if a Never-Failing-Initialization
available.
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Alternatives to Never-Failing-Initialization

Continuation, Davidenko Equation, etc.,
WORK but MANY POTENTIAL PROBLEMS
Discussed in many references including:
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Never-Failing-Initialization: Seven Series

Options

small ¢ large ¢
spherical Hermite
harmonics functions
Pade from Pade from
small ¢ large €

lall €

TWO-POINT
PADE

Rational Chebyshev (TL series)
foreach s

Double Rational Chebyshev
(€, s)
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Two-Point Padé Approximants
Example: Kelvin wave

The existence of such approximations sug-
gests a unity of structure and identity in the
Kelvin mode over all of € € [0, oo].

Linear Polynomial/Linear Polynomial in /€ Matches
(i) € = O limit (ii) two terms in 1/./€:

+ +
FY = -
_|_
(1+4E”2‘/ST 4e1/2> )

. . . — int
The next Kelvin approximation cj,/5, """ matches

the first three terms of the large-e expansion
and two terms of the small-€ series [not shown]

The maximum relative error of the two-point
Padé ctujo] point gor Kelvin mode is only 0.0184
over all of € € [0, ].
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Absolute errors in ¢ for Kelvin Wave for s=1
Black with open circles: [3/3] Pade in 1/sqrt(e)
green hexagrams: [3/3] Pade in sqrt(e)
red diamonds [2/2] Two-pt Pade, max err=0.02243
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Figure 1: Errors in the small-€ and large-€ Padé [3/3] approximations and also the quadratic-over-

quadratic cjy)5;" 2t two-point rational approximation that for the phase speed for the Kelvin

mode for s = 1.
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Deriving Asymptotic Series by Galerkin
Methods & Computer Algebra

- Galerkin Matrix Elements by Exact, Analyti-
cal Integration
Hermite function basis [large €]
spherical harmonic basis [Small €]

- Expand in € or 1/./€ & match powers

. Solve order-by-order in exact rational arith-
metic

Low order small € expansions by Dikii & Golit-
syn and by Longuet-Higgins circa 1965
LH gave limited results for large €
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Exponential Smallness & Hermite Functions

[Define u = sin(latitude)]
Key step in large €, Hermite function asymp-
totics is

u— y/JJe

Paradox: y € [—e~1/4, e~ 1/4]
but Galerkin integrals are on y € [ —o0, o0 ]

- error is EXPONENTIALLY SMALL
- exp(—1/+/€) is INVISIBLE to e-power series

- Coeflicients of asymptotic series are EXACT
& RATIONAL

.- Series DIVERGE

20



Reviews on Exponential Smallness

"The Devil’s Invention: Asymptotics, Superasymp-
totics and Hyperasymptotics", Acta Applican-
dae, 56, 1-98 (1999).

" Hyperasymptotics and the Linear Boundary
Layer Problem: Why Asymptotic Series Diverge,
SIAM Rev. , 47, no. 3, 553-575 (2005)

Mathematics and Its Applications

John P. Boyd

Weakly Nonlocal Solitary
Waves and Beyond-All-Orders
Asymptotics

Generalized Solitons and
Hyperasymptotic Perturbation Theory

Kluwer Academic Publishers



SUMMARY

. Equatorial trapping depends on s + €
|zonal wavenumber (squared) plus
Lamb’s parameter]

- Kelvin Cnoidal Wave/Corner Wave/Breaking:

Small amplitude Kelvin:
cnoidal waves & solitons

Largest non-breaking Kelvin wave is
a corner wave

Medium & large amplitude Kelvin:
frontogenesis and breaking

- Hough point clouds can be connected by per-
turbation series and two-point Padé approx-
imations

In preparation: “Hough Functions: Revisit-
ing Longuet-Higgins’ Masterwork Half a Cen-
tury Later”
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