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SINCE KLINKER AND SARDESHMUKH (1992)
PUBLISHED THEIR METHOD TO DETERMINE
SYSTEMATIC INITIAL TENDENCY ERRORS
AND NEW IMPROVED REANALYSIS BECAME
AVAILABLE IN THE FORM OF THE NEW REA-
15 AND LATER THE PLANS FOR REA-40 WE
HAVE BEEN INTERESTED IN TRYING TO USE IT
ERRORS IN OUR




(Neither the REA-40 nor the ECHAMS were available when this Part 1 were
carried out)

We had p
SITEs by assimilating the relativ
L31), given 4 times a day, into the low resolution
(T42, L19). We had realized the problems:

 The necessary truncation from T106 to T42 and the vertical interpolation from
31 levels to 19 levels creates small scale noise in the data

 Asthe data were given only 4 times a day the daily solar cycle could not be
resolved adequate at all places.

Therefore two versions of a new “continuous” assimilation technique:

The “Slow Normal Mode Insertion (SNMI)” technique

were developed, tested and compared with a traditional nudging technique
(DMI nudging), as described in the following Part 1.






The traditional NODGING technique (Jeuken et al., 1996) is defined as follows:

The SNMI scheme is a

BT ;X S NODGING scheme. So, we shall
':'.,-._;_.'-51_}'135 AT 1) i at first introduce that scheme.
LT In the NODGING scheme a
,- S nudging term, with a nudging
oy ) L coefficient G; is added to the
M o prognostic equation. In a three
level scheme the equation may
be written as shown in (1) where
e u; is a nudging weight for the
oy o variable X; and X35t ; is the
S cubic spline interpolated
observed value at time (n+1) /
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the FAST NC
Thus we may write

X(t): [X(t)]slow+ [X(t)]fast
We wont to assimilate only the slow normal mode part of the ERA data so we insert

Xg-ll;%:(erlE}l)slow'F(Xm-l)fast and X#t-l-l:(xg:-l)slow + (X#l-l-l)fast

Into (1) and get

X" =[(0) X (XERD stow™ (L-H®) X (X5 Dstow] + [(X5 ) fase] 2)

THUS, WE ARE NUDGING THE SLOW MODES TOWARDS THE ERA, WHEREAS THE
FAST MODES ARE COMPLETELY FREE. I. E. THEY ARE FORECASTED BY THE
MODEL WITHOUT ANY NODING TOWARD THE ERA. IF p = 1 THE QUPIC SPLINE
INTERPOLATED SLOW NORMAL MODES ARE INSERTED EVERY TIMESTEP.
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« We have tested twa
versions:

FUull(SNMI) witlfcopstant
p=1

Opt(SNMI) with p cosine

shaped around synoptic
times and a “wind-cw”
with u=0 between.



The traditional NODGING technique (Jeuken et al., 1996) is defined as follows:

SLIDE 7:

Table 1: Relaxation coefficients in DMI nudging

The third NODGING version is the so called DMI nudging. It was developed at the Danis
Meteorological Institute by Eigil Kass et al. (2000). The intension was to develop a schgime work
iIng approximately as the SNMI scheme, without having to separate between slow and fast
modes. By using a low nudging or relaxation coefficient for temperature, log pressure and

especially divergence and a high one for vorticity the relaxation should be mainly towards
Rossby modes



COMBINED SURFACE PRESSURE
TENDENCIES (SHADED) AND MEAN
SEA LEVEL PRESSURE (CURVES).

(A) Full(SNMI) nudging (pu=1)

(B) Opt(SNMI) /
(C) DMI nudging /
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HOVM@LLER DIAGRAMS OF 1000 X log(P)surface O
LATITUDE BAND 63 DEG S TO 53 DEG S.

(A) FULL FIELD IN FREE RUN. OUTPUT EACH TIME STEP

LEFT)
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Temperature at the lowest model level ( level 19) over
Asia (21 deg N, 95 deg E) during a 2.5 day period in

TWIN experiments
single point at 21°N and 95°E lowest lovel April.
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SLIDE 11: Simulation of precipitation

Global precipitatio
July 1987 to January 1994.

OPT(SNMI) assimilations (Upper left)

GPCC analyses (middle left)
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SLIDE 12

=N,

AMERICA DURIN ANU

A) GPCC ANALYSES (UPPER LEFT)

B) OPT(SNMI) ASSIMILATIONS (UPPER RIGHT)

C) ERA 6 HOURS FIRST GUESS FORECASTS (LOWER LEFT)

D) DMI NUDGING ASSIMILATIONS (LOWER RIGHT)
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A) Zonal averaged magnitude of parametrized GWD acceleration.
(upper left)

B) zonal averaged magnitude of parametrized GWD temperature
tendency (upper right)

C) zonal averaged magnitude of the estimated acceleration error for
assimilation of the free ECHAM4 simulated April month. (Extreme valu
m/s/day) (middle left)

D) zonal averaged estimated temperature tendency error for
assimilation of the free ECHAMA4 simulated April month. (Extr
K/day) (middle right

E) zonal averaged magnitude of the estimated accelé&ration error for an
assimilation of an ECHAM4 April month simulation, ith a version of
ECHAMA4 without a GWD parametrization. (lower feft)

F) Same as (lower left) but for temperature error. (lower right))
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In SLIDE 14 and 15 the estimation of SITEs by the SNNI and the DMI nudging techniques was
tested and compared in “identical twin” experiments:

A free ECHAM4 simulated April month was taken as the trues. Six hourly output from this
simulation was assimilated into the ECHAM4 model and SITEs were computed for each of the
assimilation techniques. ldeally these SITEs should be zero but because the non-perfect time
interpolation between the available FOUR DAILY SYNOPTIC TIMES they are not zero.

In SLIDE 14 and 15 are shown cross sections of monthly mean zonal averaged tendency errors
for the different assimilation methods. In each of the figures are shown in the middle row to the
left (C): The zonal averaged magnitude of the estimated acceleration error and in the same
row to the right (D:) the zonal averaged temperature tendency error.

For the full(SNMI), the DMI nudging and the obt(SNMI) technique the maximum mean
acceleration error is 1.0, 0.6, and 0.5 m/s/day, respectively. And the maximum mean
temperature error is 0.10,0.08 and 0.08 K/day, respectively.

The SITEs are compared with the mean value of the Gravity Wave Drag (GWD) which were
implemented in ECHAM4 and applied in the April simulation. In the upper row to the left (A) is
shown the monthly mean zonal averaged GWD acceleration and to the right (B) the
corresponding temperature tendency. Comparing the acceleration errors in (C)/(D) whit
those in (A)/(B) we see that the time truncation acceleration errors are only between two and
three times smaller than the GWD accelerations and the time truncating heating rates are of
the same order of magnitude as the GWD heating rates. So, the time truncation errors are not
insignificant compared to GWD and as seen in the bottom cross sections of the figures it El 8
would be difficult to detect a missing GWD parameterization in a model using any of the SIT
techniques tested here.
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UPPER MAP: AVERAGED WINTER (DJF) MEAN SEA LEVEL PRESSURE
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AVERAGED WINTER TIME (DJF) 200 HPA VELOCITY POTENTIAL
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SITE’S FOR TEMPERATURE AT LEVEL 11 (~500 HPA) BASED ON 8
YEARS (1982-1989) OF ERA ASSIMILATION USING THE
OPT(SNMI) TECHNIQUE IN

optsNMliemal} 17, temperators {mean! (K/cay)

AN ECHAMA4.5 ASSIMILATION (UPPER MAP)

AND

AN ECHAM4 SIMULATION (LOWER MAP).
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WINTER SEASON (DJF) TEMPERATURE SITE’S BASED ON EIGHT YEAR
(1982-1989) OF AN OPT(SNMI) ECHAMA4.5 ASSIMILATION

A) FOR LEVEL 18 (UPPER LEFT MAP)
AND
C) FOR LEVEL 19 (LOWER LEFT MAP).
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buelwesn the AMIPL sea ice coverage and the ERA dcu ice soverage (upper right map],
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A) 5 YEAR (1983-1988) MEAN JANUARY ERA SEA ICE COVERAGE
(UPPER LEFT MAP).

C) DIFFERENCE BETWEEN THE FIVE YEAR MEAN JANUARY AMIP2 SEA
ICE COVERAGE AND THE FIVE YEAR MEAN JANUARY ERA SEA ICE
COVERAGE (LOWER LEFT MAP)

B) DIFFERENCE BETWEEN THE FIVE YEAR MEAN JANUARY ECHAM4
AMIP1 SEA ICE COVERAGE AND THE FIVE YEAR MEAN JANUAR
ERA SEA ICE COVERAGE (UPPER RIGHT MAP).

D) THE SEA ICE THICKNESS IN THE ICE2 SIMULATIO
MAP).
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Conclusions (Part 1):

Different nudging techniques were tested to assimilate higher resolution 7106,L31 reanalysis data,
REA-15, given at 4 synoptic times a day, 06, 12, 18, 24 UTC, into lower resolution 742, L 19 semi
implicit climate models, ECHAM4 and ECHAMA4.5, with a time step of 24 minutes.

Each reanalysis were at first truncated to the T42 resolution and interpolated to the 19 sigma
levels of the climate models. Using cubic splines the data were also interpolated to the 24
minutes time step of the climate models.

With DMI nudging a nudging were made with time independent nudging coefficients, which
were constant for each variable but vary from variable to variable in the same way as in external
Rossby modes.

INSERTION (SNMI) only so-called slow normal modes are nudged
SLOW NORMAL MODES are defined as the modes




Conclusion (Partl) continued:

With the opt(SNMI) assimilation all SLOW NORMAL MODE coefficients of the truncated and
interpolated ERA data are inserted for the corresponding SLOW NORMAL MODE coefficients of the
climate model, but only at and around the 4 REA synoptic analysis times. The nudging coefficient
Is decreasing to zero between the analysis times. (as illustrated at SLIDE 7). The FAST NORMAL
MODES are not nudged, they are predicted as in a free climate integration

A series of experiments have shown the superiors performance of the obt(SNMI)
assimilation technique compared with the other too techniques:

* The twin experiments presented in SLIDE 10 showed that a realistic daily solar cycle for the
surface temperature was obtained with obt(SNMI).

 The cubic spline time interpolation error were monitored at first in SLIDE 9. It was shown that with
obt(SNMI) the error between the synoptic input times were almost eliminated and

* in SLIDE 14 and 15 we showed cross sections of monthly mean zonal averaged wind and
temperature tendency errors caused by the time interpolation errors for the different
assimilation methods. The smallest tendency errors were found with obt(SNMI)

 The induced acceleration error were between two and four times smaller than the
parameterized gravity wave drag (GWD) acceleration and the interpolation heating rate error
were seen to be of the same order of magnitude as the GWD heating rates. Thus, it WOU|Q@?
difficult to detect a missing GWD parameterization from a SITE analysis. However the GWD
parameterization is weak compared to other parameterizations.



In SLIDE 8 it was shown that the obt(SNMI) assimilation technigue gave the
most realistic surface pressure tendency fields compared to similar fields
obtained with the two other assimilating techniques, because apparently long
period gravity modes (external modes with periods longer than 24 hours) with
strong vertically integrated divergence fields in the ERA data were assimilated
better with obt(SNMI).

Some Kinds of precipitation may on the other hand develop from low level
convergence fields in particular. Such fields will be represented by fast gravity

modes which are not nudged in obt(SNMI) assimilations as shown in obt(SNMI)

assimilations of at first an 8 years ERA-15 analyses and more clearly of a

January 1988 analysis considered in SLIDS 11-13. The assimilations also show

that they do not develop in the freely model predicted fast gravity modes with

the obt(SNMI) assimilation, As a result In the case considered no precipitation
er Brazil. with the obt(SNMI) assimilation.




Finally in SLIDE 17-23 it was shown how mayor surface pressure SITES (causing a center of too
high pressure over the Kara Sea, a band of too low pressure across Europe and a center of
too high pressure over the North African Cost) could be detected in the ECHAMA4. It was
shown how the reduction of the release of latent heat in the ITTC over AFRICA in the new
version, the ECHAMA4.5, had resulted in a weakening of the center of too high pressure over
the North African Cost as well as reduced the too low pressure in the band across Europe.
Finally, experiments with the observed reduced extend of sea ice over the Arctic Ocean and
at the same time a reduction of the thickness of the sea ice were reported on. The result of
this experiment was as expected that the center of too high pressure over the Kara Sea were
almost eliminated. At the same time, however, unexpected intensification of the band of too
low pressure across Europe and the center of too high pressure over the African Coast took
Place.

Final Part 1 conclusion:

The conclusion from PART 1 is that in general the SITE detection by the obt(SNMI) technique
works satisfactory and generally better than the DMI nudging technique. The purpose of the
obt(SNMI) technique is to assimilate higher resolution ERA data (here with resolution T106,L31)
given at four synoptic times a day, into lower resolution climate models (here with resolution
142, L19) with a time step of 24 minutes. This involves truncation and interpolation which tend
to introduce noise that typically is represented by fast gravity modes. To avoid such noise we
are nudging only Slow Normal Modes with periods longer than 24 hours. Thus we can use
obt(SNMI) except when we wont to detect low level divergence fields which are represen?8
by fast modes. In that case the DMI technique should be preferred. However, small scale
divergence fields in the T106,L31 resolution will not be realistically represented in T42,L19
resolution.
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