

http://blogs.discovermagazine.com/imageo/2013/04/25/on-the-edge-redux/#.WceTMjOZNE4 Photo from Daniel Schwen

Large storms can rapidly take out ice

AWI sea ice data portal

Potential Influence of Floes on Sea Ice & Climate

- Smaller floes have relative more lateral area than basal area
- So smaller floes melt away faster and enhance ice edge retreat
- Could lead to very rapid sea ice loss events (vRILEs)
- Coupled to ocean surface waves and ocean mixing

Sea ice models have simulated the ice-thickness distribution for a few decades

A grid cell has these variables in each thickness category

Schematic from Notz and Bitz (2017)

Each Category has a fraction of the ice cover, giving this example distribution

Test of CCSM4 (no wave or floe size model). All floes were 300 m in diameter, and I simply set them to 3m.

In February, Antarctic sea ice concentration is 10-20% less and there is overall 20% less sea ice area.

Sea ice models have simulated the ice-thickness distribution for a few decades

A grid cell has these variables in each thickness category

Schematic from Notz and Bitz (2017)

We've added a floe size distribution to each thickness category, giving a joint thickness floe-size distribution

Sea ice models have simulated the ice-thickness distribution for a few decades

A grid cell has these variables in each thickness category

Schematic from Notz and Bitz (2017)

We've added a floe size distribution to each thickness category, giving a joint thickness floe-size distribution

We coded it up in CICE5 in the CESM2 codebase

Northern Hemisphere mean Joint thickness and floe-size distribution in CICE5

Northern Hemisphere mean Joint thickness and floe-size distribution in CICE5

Northern Hemisphere mean Joint thickness and floe-size distribution in CICE5

We have 12 size bins and 5 thickness bins (60 total)

Smallest floe mean size is ~3m

Fracturing is illustrated here:

Dumont et al (2011)

- Sea ice model needs to know wave amplitude spectrum
- We then convert the spectrum into a 1D sea surface height and examine the spacing of maxima using the method of Horvat and Tziperman (2015)

A sample sea surface height:

Processes that influence floe size

- 1. Lateral melt
- 2. Lateral growth
- 3. New ice growth assumed to start as pancakes for now
- 4. Floe merging
- 5. Wave fracture

$$\frac{\partial f}{\partial t} = -\nabla \cdot (f(r, h)\mathbf{u}) + \mathcal{L}_T + \mathcal{L}_M + \mathcal{L}_W$$

Modeling a Joint floe-size (r) and thickness (h) distribution of sea ice,

f(r,h)

Prescribing wave spectrum

Influence of joint floe-thickness model on September Extent/Volume

Little influence on September sea ice **extent** because atmosphere is prescribed (bias here is due to slab ocean)

Bigger influence on volume

We have coupled CICE5 in CESM2 to WAVEWATCH3 v5.16, which predicts the surface wave spectrum.

What does sea ice do to waves?

- Sea ice damps waves as waves deform the ice, damping wave energy
- Sea ice also scatters waves, redirecting wave energy

Dumont et al (2011)

30 March 2017 Subpolar Seas

Influence of floe-size model coupled to wave model on "Representative" Floe Size

15% Sea Ice Contour showing sea ice edge is in black

Significant Wave Height, Hs

Statistical wave distribution

Wavelength

Figure from Wikipedia WAVEWATCH definition of Hs is 4 (area under curve)^{0.5}

Significant Wave Height - m

In this experiment, all floes damp waves (this is an animation when given live)

In this experiment, only floes >6m damp waves, So waves travel much further into the sea ice!

What's next?

Run coupled wave-sea ice model for recent extreme cases

Turn on atmosphere and ocean when CESM2 is released

Work on constraining with observations

Conclusions

First joint floe-thickness distribution for climate simulations and first coupled floe-wave model

All five processes have a strong influence

Floe-Wave coupling causes abrupt spatial edge in wave height and floe size