Understanding and scaling change in lowland permafrost:

Cross-scale feedbacks to hydrology and carbon

Merritt R. Turetsky University of Guelph

Permafrost is both climate- and ecosystem- driven

Permafrost is both climate- and ecosystem- driven

Permafrost is both climate- and ecosystem- driven

Abrupt thaw typically involves local subsidence and wetting

See work by Bill Quinton, Kevin Devito, Mike Waddington

Increasing runoff & basin drainage

Wetting AND drying through time

Life Cycle of Thaw Lakes: Subsidence and Wetting ->
Drainage -> Permafrost Recovery

Thermokarst state & transition model

Lowland organic

Lowland mineral

Upland mineral

For each generalized thaw trajectory, we synthesized data on:

- spatial extent of early and late thaw states
- transition rates between states
- carbon fluxes for each state

Thermokarst C losses dominated by upland environments

How important is CH₄ to permafrost C losses?

- CH₄-C contributed little to total C release in a synthesis of year long incubations of permafrost soils (Schadel et al. 2016)
- However, CH₄ became significant in a 7+ year incubation (Knoblauch et al. 2018)

Oxic environments lost the most C with thaw, but radiative forcing of CH₄ was high across all landscape settings

Known Unknown #1 Fate of erosional material

Known Unknown #2 Emissions during zero curtain

Known Unknown #3 Methane seeps can transform the landscape

- Geologic sources of CH₄ (cf. Walter Anthony et al. 2012)
- Enhanced CO₂ uptake in Arctic ocean seep exceeded GWP of emitted CH₄ (Pohlman et al. 2017)

Recurring theme: Heterogeneity Occurs in Time and Space

Permafrost thaw

Hot moment process:

<5% of bubble trap measurements responsible for >95% of old C release

Methane ebullition

Public Engagement

Public Engagement

We all have stories to share. They are more powerful together so we have a unique opportunity for science engagement.

At lunch today, please join me to explore this and other outreach opportunities!

Thank you

mrt@uoguelph.ca

Principles for effective communication and public engagement on climate change

A Handbook for IPCC authors

- 1. Be a confident communicator
- 2. Talk about the real world, not abstract ideas
- 3. Connect with what matters to your audience
- 4. Tell a human story
- Lead with what you know
- 6. Use the most effective visual communication

Simulated change in areas in lowland organic terrain

Simulated change in net ecosystem carbon balance

Case study: Peel Plateau megaslumps

cause massive greenhouse gas release

What about permafrost peatlands?

permafrost = topography!

Sniderhan and Baltzer 2016