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in some climatologies
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FIG. 2. Winter statistics for (a) frequency of all inversions, (b) frequency of elevated inversions, (c) median inversion depths,
and (d) median temperature difference across the inversion layer.



Radiative forcing (IPCC) is calculated at
the tropopause or top-of-atmosphere
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RF in the presence of an inversion
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Negative RF from water vapor

We can see this effect in water vapor radiative

kernels used widely to decompose climate
feedbacks

Water vapor —F kernel Negative values indicate that an increase
[ TS SV B (SR S in water vapor causes negative RF

Soden et al (2008)
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Small or negative RF from whole-
column CO, over polar regions

0 US Standard Atmosphere, Schmithiisen et al (2015, GRL)
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In this case, negative RF is due to the upper troposphere / lower stratosphere
being warmer than the surface
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An analytical demonstration

I () = BA[T] T3 +f0 Ba[T (2)]
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Questions raised

e How does the climate system respond to GHG
increases occurring in tropospheric
temperature inversion environments?

* |s the standard concept of RF even useful for
these environments (i.e., polar winter)?

 Could the surface actually cool from a targeted

increase in short-lived GHG?

. : . o
— Possible geoengineering strategy? =0



An extreme experiment oo

Surface Simulations
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e Fully-coupled CESM
simulations (B_1850) with
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Radiative forcing in CESM

‘1' ‘1' ¢ e |nstantaneous RF:

Longwave Radiative Forcings

ot e e — Negative at the TOA
AR [y i and tropopause
— Positive at the
surface
o Effective radiative
forcing (diagnosed
with fixed-SST

simulations):
— Negative
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 Troposphere cools in vicinity

Temperature response

of the gas increase

— Emission from the layer
increases more than
absorption by the layer

e It is the warmest point of the
surface-atmosphere column

Surface warms

— Increase in downwelling
longwave flux outweighs the

impact from a cooling
troposphere

— A unique response facilitated
by the stable atmosphere
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Surface temperature response

Experiment — Control Surface Temperature Change [K]
Dec-Jan-Feb Jun-Jul-Aug

Surface warms, despite
negative ERF and
tropospheric cooling

Reduced sea-ice in the Arctic
amplifies its response
relative to Antarctic

Surface RF is weaker over
central Antarctica and
Greenland because
perturbation occurred above
the inversion peak

Temperature inversion
weakens as the simulation
progresses
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Stability plays a key role in T, response

Arctic surface temperature response to
2xCO, is reduced when boundary-layer
mixing is artificially increased (Bintanja

et al, 2011)

Surface inversion becomes progressively
weaker in the future, thus reducing the
amplifying effect of a stable atmosphere
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Stability plays a key role in T, response

 Response of the net surface energy budget and
temperature to sea-ice loss is largest during winter,
when stability is high (Deser et al, 2010)
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Stability plays a role in cloud response

e Where sea-ice is lost, low clouds form over newly
open water in autumn (when stability is low) but not
(much) in other seasons, when inversions are still
present (Kay and Gettelman, 2009)
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Stability plays a key role in T, response

 Even further back... Convective decoupling of
the surface and troposphere during nuclear
winter results in strong warming near the
tropopause and cooling at the surface, despite
positive RF (Turco et al, 1983, Cess et al, 1985)

Fig. 3. Northern
Hemisphere tropo-
sphere and strato-
sphere temperature
perturbations (in Kel-
vins; 1 K = 1°C) after
the baseline nuclear
exchange (case 1).
The hatched area in-
dicates cooling. Am-
bient pressure levels
in millibars are also
given.
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Another example of ill-behaved forcing:
Black carbon in the Arctic atmosphere
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e /Black carbon exerts positive TOA RF
— |t warms the atmosphere
 But when located sufficiently high, it cools the surface

— Less sunlight at the surface and insufficient coupling to
mix the heat down



Conclusions

Under highly stable conditions (Arctic winter)...

— ERF can fail to predict the correct sign of surface
temperature response to a GHG increase

— Surface RF governs surface temperature change more than
TOA RF or ERF

— Perturbations to the surface energy budget drive
disproportionately large surface temperature change

Simulated polar surface responses to external forcings
are sensitive to boundary layer representation

Polar winter stability will decrease with climate warming

Injecting short-lived GHGs into polar inversion layers
would fail to cool the planetary surface, despite exerting
negative ERF and cooling the inversion layer
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