CloudSat Polar Precipitation Observations (2006-present)

Boening et al, *Geophys. Res. Letters*, (2012): Trends in independent estimates of Antarctic snowfall accumulation from CloudSat, GRACE, and ERA-interim reanalysis in excellent agreement.

Annual mean accumulation on the GrIS: 650 Gt y⁻¹

ANTARCTIC SNOWFALL

Palerme et al, *Climate Dynamics*, (2017): Climate models overestimate Antarctic precipitation; models that better reproduce CloudSat observations predict larger increases in RCP scenarios.

PREFIRE: An Upcoming Satellite Mission to Improve Arctic Surface Energy and Mass Budgets

Science Team: Brian Kahn Jen Kay Xianglei Huang Aronne Merelli Nicole-Jeanne Schlegel

Deputy PI: Brian Drouin

Jet Propulsion Laboratory California Institute of Technology

Observations to Improve Knowledge of Arctic Processes

- TPVs ↔ Arctic cyclones ↔ Sea ice (THINICE; Cavallo)
- Surface thermal radiation ↔ Sea ice/ice sheets ↔ Water vapor/clouds (PREFIRE; L'Ecuyer)

Bias (Wm⁻²)

Influence on Ice Sheet Processes

Courtesy: N.-J. Schlegel

Impacts of Realistic Surface Emissivity in CAM5

Courtesy: Xianglei Huang

Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) ling fluctuations in Earth's thermostat by capturing the full spectrum of Arctic radiant energy

Principal Investigator: Tristan L'Ecuyer, UW-Madison

Project Scientist: Brian Drouin, JPL/CalTech

PREFIRE Hypotheses

- 1. Time-varying errors in far-infrared emissivities and atmospheric greenhouse effects (GHE) bias estimates of energy exchanges between the surface and the atmosphere in the Arctic.
- 2. These errors are responsible for a large fraction of the spread in projected rates of Arctic warming, sea ice loss, ice sheet melt, and sea level rise.

PREFIRE will document, for the first time, variability in spectral fluxes from 5-45 µm on hourly to seasonal timescales.

Two 3U CubeSats in distinct 470–650 km altitude, near-polar (82°-98° inclination) orbitseach carrying a miniaturized IR spectrometer, covering 0-45 µm at 0.84 µm spectral resolution, operating for one seasonal cycle (a year).

The Arctic is Earth's thermostat. It regulates the climate by venting excess energy received in the tropics.

Nearly 60% of Arctic emission occurs at wavelengths > 15 μ m (FIR) that have never been systematically measured.

PREFIRE improves Arctic climate predictions by anchoring spectral FIR emission and atmospheric GHE

Jet Propulsion Laboratory Space Dynamics The University of Colorado Boulder California Institute of Technology

PREFIRE Measurements Now Possib

Two 3-U CubeSats in asynchronous polar orbits

- Power subsystem, attitude control, command and data handling, high data rate telecommunications
- Solar panels configured to minimize thermal variations
- Thermal IR Spectrometer (TIRS)
 - Ambient temperature FIR spectral imager
 - Thermopile focal plane
 - Offner architecture: 0.97 kg and fits within 1U
 - Shaped groove grating (Silicon with gold plating) THERMOPILE

Thermal Infrared Spectrometer

- a Optical bench assembly
- b Calibration motor assembly

c - Calibration target

Thermopile array	Spectral resolution	Spatial coverage	Mass	Data rate	Power peak/avg
64 × 16 pixels	0.84 μm from 0–45 μm	16 cross-track pixels with 1.2° footprints	0.97 kg	35 kbps	6.74 / 1.74 W
	Jet Propulsion Laborat California Institute of Technol		Iniversity of Cold	orado Boulder	UNIVERSITY OF MICH

GRATING

Data Products

Broadband LW Fluxes

Thermal Energy Flux to the Surface

Science Traceability Matrix

NASA	Science Objectives and	Scientific Measurement Requirements		Instrument Functional	Projected Instrument	Mission Functional
Science	Questions	Observables	Physical Parameters and Requirements	Requirements	Performance	Requirements
Variability and Change	Objective 1.1 (O1.1): Quantify snow and ice FIR emissivity spectra and their variability on seasonal scales	Clear-sky spectral radiances across FIR for 2/3 of the CWV, surface T, and surface conditions poleward of 55°N over the complete annual cycle supplemented with spectral radiances in the colder, drier, and less variable interior Antarctic ice sheet	Ability to resolve clear-sky OLR + FIR monthly flux variability: 3% or 8 Wm ⁻² in total OLR (4 Wm ⁻² in FIR) Water continuum and surface emissivity sensitivity >15 µm with spectral resolution to discriminate emission features of snow, ice, and open ocean surfaces Broad coverage of thermal emission with spatial resolution to distinguish cloudy and clear scenes	Spectral Range/Res: 5-45 μ m (Table D-3) Spectral Resolution: $\Delta\lambda \sim 1 \mu$ m (Fig D-6) IFOV: ~ 15 km (Table D-3) 2M samples per day for 6 months (Fig D-5) Radiometric accur. < 3% NEDT >15 μ m: ~1.5K 5-15 μ m: ~1.5K	Spectral Range: 0-54 μ m Spectral Resolution: $\Delta\lambda = 0.84 \mu$ m IFOV: 1.2° (14 km GSD) Radiometric accur.1% NEDT 15-54 μ m: 1K 0-54 μ m: 1K < 0.5%/year absolute calibration drift	Threshold Mission One 3U CubeSat with FIR imaging spectrometer Inclination at least 82-98° 6 months of operation Altitude 470-650 km Nadir sampling 55-85°N and 70- 90°S Pixel Size: 1.3° [15 km @ 650 km orbit] Pointing knowledge < 0.1° Jitter: < 0.1°/sec Accuracy: 5° Swath 16 pixels (224 km)
Climate	O1.2: Quantify the FIR GHE and its response to seasonal variations in cloud cover and water vapor	2/3 of CWV, surface T, and surface conditions poleward of 55°N	Ability to resolve all-sky OLR + FIR monthly flux variability: 5% or 13 Wm ⁻² in total OLR (6 Wm ⁻² in FIR)	(Fig D-6) Stable spectro-radio-metric accuracy for at least 6 months in orbit		
Energy and Water Cycle	O1.3: Quantify variability in Arctic spectral surface emission and the atmospheric GHE across the FIR owing to transient cloud and water vapor and sub- daily melt processes	Time-differenced spectra on time-scales representative of changes in surface characteristics during melt / freeze cycles and cloud cover (Δ t from 1-9 hours) Sampling over one complete annual freeze/melt cycle	Sampling by two satellites at a range of observation time intervals	Both satellites with stable spectro-radio-metric accuracy for at least 1 year in orbit	< 0.5%/year absolute calibration drift on each CubeSat	Baseline Mission Two 3U CubeSats with FIR imaging spectrometers in uncoordinated orbits, each operating for one year
Climate Variability and Change	O2.1 Quantify the influence of thermal emission biases on projected rates of Arctic warming and sea ice loss	Spectral surface emissivity from 5-45 µm for 2/3 of the CWV, surface T, and surface conditions poleward of 55°N All-sky and clear-sky spectral fluxes at TOA	Computed spectral fluxes from observed spectral radiances subject to integral broadband constraint Spectral and broadband OLR over a wide range of geophysical variables defined by typical seasonal cycle	Spectral Range: 0-45 μm Spectral Resolution: Δλ ~ 1 μm Radiometric accur. <3% NEDT >15 μm: ~1.5K 0-15 μm: ~1.5K	Spectral Range: 0-54 μ m Spectral Resolution: $\Delta \lambda = 0.84 \mu$ m IFOV: 1.2° (14 km GSD) Radiometric accur. 1% NEDT 15-54 μ m: 1K 0-54 μ m: 1K	Threshold Mission
Energy and Water Cvrcle	O2.2: Determine the impact of improved surface emissivity on modeled ice sheet dynamic processes on hourly scales	Time-differenced surface emissivity spectra from 5-45 µm associated with sub-daily freeze/melt events	Spectral and broadband OLR differences over a range of observation time intervals from 1-9 hours			Baseline Mission

The PREFIRE Team

Who is doing the work and how?

PREFIRE utilizes university partnerships for data analysis, spacecraft, and ground systems along with advances in planetary detector technology, SDL flight-proven spacecraft, and JPL instrumentation.

SCIENCE TEAM							
Tristan L'Ecuyer	Principal Investigator, University of	Internationally recognized in satellite based climate science; responsible for mission			TEC	1	
	Wisconsin, Madison	success			Jet Propulsion	Decades of experience in space- project management and instrument	Jet Propulsion Laboratory
Datas Davida	Deputy Principal	Experienced spectrometer		Jet Propulsion Laboratory	Laboratory (JPL)	development	
Brian Drouin	Project Scientist, JPL	builder, algorithm data provider	MASA	California Institute of Technology	University of Wisconsin, Madison	Experience with Data Center and Data Processing and Ground	
Aronne Merelli	SSEC/UW, Madison	Cloud/Water vapor retrievals			(UW)	Operations	WISCONSIN
Jennifer Kay	University of Colorado	Global modeling	Ģ	¹ University of Colorado Boulder	Space Science and Engineering Center	Earth Climate data processing center	UNIVERITY OF WISCOSSIT-MADISON
Xianglei Huang	University of Michigan	Surface spectral emissivity; radiance to broadband conversion		UNIVERSITY OF MICHIGAN	Space Dynamics Laboratory (SDL)	Small satellite builder and missions operations; one of the nodes on the	Space Dynamics
Brian Kahn	Jet Propulsion Laboratory	Cloud/Water vapor retrievals			University)	MC3 network	Utan State University Research Foundation
Nicole-Jeanne Schlegel	Jet Propulsion Laboratory	Ice sheet modeling	NATSA	Jet Propulsion Laboratory California Institute of Technology			