

Utilizing the International Land Model Benchmarking (ILAMB) package to assess structural advances and forcing uncertainty in the Community Land Model (CLM)

> David Lawrence NCAR

Keith Oleson, Will Wieder, Forrest Hoffman, Nathan Collier, Rosie Fisher, Sean Swenson, Charlie Koven, Jim Randerson, Bill Riley, Mingquan Mu, and many others in the CLM development team

CLM4 (June 2010) CLM4.5 (June 2013) **CLM5** (Feb 2018)

- Carbon and nitrog prognostic vegetat
- Transient land cove wood harvest
- 'Permafrost-enable deep ground
- Aerosol deposition
- Simple groundwate
- Urban model

- Vertically-
 - Co-limitat
 - of photos
 - Variable ri
 - Natural C
 - Human tr
 - suppressic
 - Cold regio

 - classes

- Flexible leaf stoichiometry, leaf N optimize for photosynthesis
- Carbon costs for plant N uptake
- Plant hydraulics w/ hydraulic redistribution, Ecosystem • demography (FATES), ozone damage
- Spatially explicit soil depth (0.4 8.5m), dry surface layer, • revised GW, canopy interception, representative hillslopes
- MOSART river model (hillslope \rightarrow tributary \rightarrow main channel)
- Canopy snow, snow dens (T, wind), simple firn model
- Global crop model (8 crop types), transient irrigation and fertilization, shifting cultivation
- Dynamic landunits (nat veg $\leftarrow \rightarrow$ crop, glacier $\leftarrow \rightarrow$ nat veg,)
- Urban heating and AC, heat stress indices
- Carbon isotopes
- Coupled fire trace gas emissions

- - Revised la
 - Multiple u

Land-only simulations for CLM5 release, documentation papers, and CMIP6

		CL	M4			CLN	14.5		CLM5				
Forcing	SP	BGC	+CO ₂ +N	no LULCC	SP	BGC	+CO ₂ +N	no LULCC	SP	BGC crop	+CO ₂ +N	no LULCC, LUMIP LM	
GSWP3 vl	٧o	√ ° *	\checkmark	\checkmark	~	√ ° *	\checkmark	~	٧o	√ ° *	\checkmark	~	
CRUNCEP v7		\checkmark				\checkmark			~	√ ∗		~	
WATCH/ WFDEI									>	\checkmark			

✓ Historical simulation (1850-2014)

* Projection period simulation (RCP8.5 2015-2300)

^o Daily and hourly output

- Currently integrates analysis of 27 variables in 4 categories from >60 datasets
 - above ground live biomass, burned area, carbon dioxide, gross primary production, leaf area index, global net ecosystem carbon balance, net ecosystem exchange, ecosystem respiration, soil carbon
 - evapotranspiration, latent heat, sensible heat, runoff, evaporative fraction, terrestrial water storage anomaly
 - albedo, surface upward SW radiation, surface net SW radiation, surface upward LW radiation, surface net LW radiation, surface net radiation
 - surface air temperature, precipitation, surface relative humidity, surface downward
 SW radiation, surface downward LW radiation
- Graphics and scoring system
 - annual mean, bias, relative bias, RMSE, seasonal cycle phase, spatial distribution, interannual variability, variable-to-variable
 - Global maps, time series plots averaged over specific regions, individual measurement sites, functional relationships
- Open Source (https://pypi.org/project/ILAMB/)

prognostic vegetation and carbon configuration

 For majority of variables, progression in simulation quality from CLM4 to CLM5

CLM land-only forced with GSWP3

- Why?
 - Improvements in mechanistic treatment of processes (e.g., hydrology, biogeochemistry, land use)
 - But, many more moving parts

http://webext.cgd.ucar.edu/I20TR/_build_set ICO2/index.html

ILAMB Benchmark Results								
Mean State	Relationship		Results Table					
Maan State Sector								
Mean State Scores								
			Columns					
	CLM40r243GSWP3	CLM45r243GSWP3	CLM50r243GSWP3					
Biomass	0.63	0.66	0.68					
Burned Area	0.35	0.49	0.56					
Gross Primary Productivity	0.71	0.75	0.74					
Leaf Area Index	0.58	0.62	0.70					
Global Net Ecosystem Carbon Balance	0.71	0.64	0.86					
Net Ecosystem Exchange	0.56	0.57	0.60 🗸					
Ecosystem Respiration	0.68	0.74	0.74					
Soil Carbon	0.42	0.69	0.40					
Evapotranspiration	0.78	0.81	0.80					
Evaporative Fraction	0.85	0.87	0.86					
Latent Heat	0.79	0.82	0.84					
Runoff	0.81	0.81	0.78					
Sensible Heat	0.78	0.80	0.79 🗸					
Terrestrial Water Storage Anomaly	0.48	0.48	0.47 🗸					
Albedo	0.77	0.77	0.78					
Surface Upward SW Radiation	0.78	0.77	0.77					

ILAMB Benchmark Results								
Mean State	Relationship		Results Table					
Mean State Scores								
			Columns					
	CLM40r243GSWP3	CLM45r243GSWP3	CLM50r243GSWP3					
Biomass	0.63	0.66	0.68					
Burned Area	0.35	0.49	0.56 🗸					
Gross Primary Productivity	0.71	0.75	0.74					
Fluxnet (37.5%)	0.70	0.73	0.71					
<u>GBAF</u> (62.5%)	0.73	0.76	0.76					
Leaf Area Index	0.58	0.62	0.70					
Global Net Ecosystem Carbon Balance	0.71	0.64	0.86					
Net Ecosystem Exchange	0.56	0.57	0.60 🗸					
Ecosystem Respiration	0.68	0.74	0.74					
Soil Carbon	0.42	0.69	0.40 🗸					
Evapotranspiration	0.78	0.81	0.80 🗸					
Evaporative Fraction	0.85	0.87	0.86 🗸					
Latent Heat	0.79	0.82	0.84 🗸					
Runoff	0.81	0.81	0.78 🗸					
Sensible Heat	0.78	0.80	0.79 🔻					
Terrestrial Water Storage Anomaly	0.48	0.48	0.47 🔻					

Surface Upward SW Radiation	0.78	0.77	0.77	•
Surface Net SW Radiation	0.89	0.89	0.89	•
Surface Upward LW Radiation	0.95	0.95	0.95	-
Surface Net LW Radiation	0.85	0.85	0.83	-
Surface Air Temperature	0.97	0.97	0.98	•
Precipitation	0.82	0.82	0.82	•
Surface Relative Humidity	0.83	0.83	0.84	•
Surface Downward SW Radiation	0.92	0.92	0.92	•
Surface Downward LW Radiation	0.96	0.96	0.96	•

Relationship Scores

Columns...

	CLM40r243GSWP3	CLM45r243GSWP3	CLM50r243GSWP3
BurnedArea/GFED3	0.45	0.70	0.71
BurnedArea/GFED4	0.46	0.71	0.71
BurnedArea/GFED4	0.46	0.71	0.71
BurnedArea/GFED4S	0.43	0.63	0.66
GrossPrimaryProductivity/GBAF	0.75	0.83	0.85
LeafAreaIndex/AVHRR	0.46	0.61	0.83
LeafAreaIndex/MODIS	0.47	0.66	0.87 🗸
Evapotranspiration/GLEAM	0.77	0.89	0.92
Evapotranspiration/MODIS	0.81	0.89	0.86

prognostic vegetation and carbon configuration

CLM land-only forced with GSWP3

CLM land-only forced with GSWP3 prognostic vegetation and carbon configuration

	Dov	unioad Peri	Data od Mea	n lorigin	al grides	interse dinean dinean ennant	color contraction	not mean not mean not hear halt Perio	Uniterse Uniterse Uniterse Uniterse Uniterse Uniterse Uniterse Uniterse Uniterse Uniterse	ction law	in?	Invino?	insi Score RM	th scot	altil C	Vcle Sco Hal Dist
Benchmark	Ŀ	x 39.1	P.	N .	V	V		V	X •	×		•	x •	9	9.	
CLM40CRUNCEP	ы	43.1	50.1	21.0	39.4	16.4		10.6	22.7	0.803		0.95	0.64	0.86	0.83	0.79
CLM40GSWP3	Ы	39.1	46.7	8.21	39.4	16.4		7.78	20.1	0.934		0.96	0.68	0.84	0.88	0.81
CLM45CRUNCEP	[-]	38.7	46.0	8.58	39.4	16.4		7.20	19.7	0.815		0.97	0.69	0.86	0.88	0.82
CLM45GSWP3	[-]	36.4	43.3	8.23	39.4	16.4		4.35	18.1	0.926		0.98	0.72	0.85	0.92	0.83
CLM50CRUNCEP	Ы	38.2	45.6	8.18	39.4	16.4		6.75	19.3	0.846		0.97	0.69	0.85	0.88	0.82
CLM50GSWP3	Ð	33.5	39.9	7.26	39.4	16.4		0.890	16.3	0.883		0.98	0.74	0.85	0.93	0.85

prognostic vegetation and carbon configuration

CLM land-only forced with GSWP3

Biomass Burned Area Gross Primary Productivity Leaf Area Index Global Net Ecosystem Carbon Balance Net Ecosystem Exchange Ecosystem Respiration Soil Carbon Evapotranspiration Evaporative Fraction Latent Heat Runoff Sensible Heat Terrestrial Water Storage Anomaly Albedo Surface Upward SW Radiation Surface Net SW Radiation Surface Upward LW Radiation

Accumulated historical land carbon fluxes

Conners conserved

prognostic vegetation and carbon configuration

CLM land-only forced with GSWP3

ILAMB Runoff Metrics Table

			3	Immort		~		~	oution
		inload Do	M	ean trun	<i>U</i> 9.		SCOLE	alDist	annual
	00	N. Peric		Bias	1	Bilas	ે હરે	it Inte	ove
Benchmark	[-]	0.825							
CLM4.0_CRUNCEP	Ы	0.525		-0.300		0.68	0.68	0.69	0.68
CLM4.0_GSWP3	ы	0.769		-0.0568		0.81	0.93	0.68	0.81
CLM4.0SP_GSWP3	ы	0.861		0.0353		0.81	0.97	0.64	0.81
CLM4.5_CRUNCEP	ы	0.581		-0.244		0.72	0.87	0.67	0.75
CLM4.5_GSWP3	ы	0.812		-0.0137		0.80	0.97	0.66	0.81
CLM4.5SP_GSWP3	Ð	0.836		0.0108		0.82	0.98	0.66	0.82
CLM5.0_CRUNCEP	Ð	0.581		-0.245		0.69	0.80	0.58	0.69
CLM5.0_GSWP3	Ð	0.913		0.0875		0.79	0.97	0.59	0.79
CLM5.0SP_GSWP3	Ð	0.888		0.0627		0.81	0.97	0.61	0.79

Functional Relationships

$$S_{overall} = \frac{S_{bias} + 2S_{rmse} + S_{phase} + S_{iav} + S_{dist}}{1 + 2 + 1 + 1 + 1}$$

Scores are based on the:

- ... S_{bias} normalized bias
- ... Srmse normalized central RMSE
- ... S_{phase} timing of the maximum of the annual cycle
- ... Siav interannual variability
- ... S_{dist} spatial distribution of the period mean

Better to show you:

Argonne

http://webext.cgd.ucar.edu/I20TR/_build_figure4a/index.html

Los Alamos

Increased focus on terrestrial processes in CMIP6

Coordinated activities to assess land role in climate and climate change

 Land-only simulations forced with obs historical climate, land-systematic biases

• Land Use = LUMIP

land use forcing on climate, biogeophysics and biogeochemistry with policy relevance

• Land = LS3MIP

biogeophys feedbacks including soil moisture and snow feedbacks

 Carbon Cycle = C4MIP land biogeochemical feedbacks on climate

Updated from Meehl et al., EOS, 2014

Assessment against CMIP5 **Coupled Models**

-2

-1 +0 +1 +2worse better model model Biomass Burned Area **Gross Primary Productivity** Leaf Area Index Global Net Ecosystem Carbon Balance Net Ecosystem Exchange **Ecosystem Respiration** Soil Carbon Evapotranspiration **Evaporative Fraction** Latent Heat Runoff Sensible Heat Albedo Surface Upward SW Radiatior Surface Net SW Radiatior Surface Upward LW Radiatior Surface Net LW Radiatior Surface Net Radiatior Surface Air Temperature Precipitatior Surface Relative Humidity Surface Downward SW Radiatior Surface Downward LW Radiation

Note that this comparison 'unfair' because other ESMs are from previous generation

Dataset Weighting Rubric

Score	Certainty of data	Scale appropriateness and	Overall important of
		coverage	constraint or process
1	No uncertainty, significant	Site level observations	Observations that have
	methodological issues	with limited space/time	limited influence on the
	affecting quality	coverage	targeted Earth system
			dynamics
2	No uncertainty, some	Partial regional coverage,	Observations have direct
	methodological issues	up to 1 year	influence on the targeted
	affecting quality		Earth system dynamics
3	No uncertainty,	Regional coverage, at	Observations useful to
	methodology has some	least 1 year	constrain processes that
	peer review		contribute to the targeted
			Earth system dynamics
4	Qualitative uncertainty,	Important regional	Observations well-suited
	methodology accepted	coverage, at least 1 year	to constrain important
			processes
5	Well-defined and relatively	Global scale spanning	Observations well-suited
	low uncertainty	multiple years	for discriminating critical
			processes among models

ILAMB Summary

- Provides consistent and systematic comparison of model output against a community-assembled collection of observational datasets
- The system scores models, but also organizes results to aid the scientist in discovery
- Implementation is open source and general, ready to accept and incorporate new datasets
- Methodology as is can be thought of as an initial suggestion and can be adapted to meet new science goals

Los Alamos

Argonne

RROOKHAVEN

- ILAMB useful for multi-variate assessment/tracking of model performance across model generations ... in addition to multi-model assessments
- Impact of forcing uncertainty is considerable and can confound assessment of impacts of model development
- Despite increasing complexity of CLM (version 4 to 4.5 to 5), consistent improvement in quality of overall simulation
- Opportunities for improvement and enhancements to ILAMB
 - E.g., metrics in the pipeline: diurnal cycle metrics, permafrost distribution and ALT, soil carbon turnover time, snow thermal insulation, response to CO₂ and N fertilization
 - Additional new metrics welcome

... Open source git repository

https://bitbucket.org/ncollier/ilamb

... CLM (4/4.5/5) over the Arctic

http://www.ilamb.org/IARPC/

... ILAMB paper preprint

https://www.ilamb.org/ILAMB paper.pdf

Leaf Area Index (LAI) bias by Plant Functional Type

CLM4

NL Evergreen Temperate Tree

CLM4.5

CLM5

Future ILAMB diagnostics:

Reduced bias for 12 out of 14 PFTs

C4 grass

Thanks. Questions or comments?

International LAnd Model Benchmarking (ILAMB) project scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, +

model performs worse than average model

CLM5 snow density

Revised fresh snow density with improved temperature and wind effects Lead to increased and more realistic snow density and less thermal insulation

Figure courtesy L.Van Kampenhout

