

Parameter Uncertainty and Estimation in CLM5

Katie Dagon

ASP Postdoc, NCAR

CTSM Tutorial February 7, 2019

What is driving uncertainty in land surface model projections of climate change?

What are the sources of uncertainty in land surface models?

on Lovenduski and Bonan (2017)

What role do **parameter choices** play in overall **land model uncertainty**?

What role do **parameter choices** play in overall **land model uncertainty**?

1. Assessing parameter sensitivity through one-at-a-time changes in parameter values.

What role do **parameter choices** play in overall **land model uncertainty**?

- 1. Assessing parameter sensitivity through one-at-a-time changes in parameter values.
- 2. Using machine learning to emulate CLM and estimate parameter values.

Selecting land model parameters

Evapotranspiration

Soil Moisture

K. Dagon

Focus on CLM5 biogeophysical processes

Example parameter: medlynslope

This parameter represents the slope of the stomatal conductance – photosynthesis relationship.

From the CLM5 Documentation:

Where do uncertainty ranges come from?

Observations of photosynthesis and stomatal conductance contribute to PFT-dependent **uncertainty range** for *medlynslope* parameter.

PFT = broadleaf deciduous trees CLM default value = 4.45 Minimum = 3.1887 Maximum = 5.1076

- Which compset?
 - CLM5 with year 2000 forcing and satellite phenology (SP) mode
- What resolution?
 - 4x5 to speed up simulation time
- Simulation length?

• 20 years total, sample last 5 years after 15 years of spin-up

- Which compset?
 - CLM5 with year 2000 forcing and satellite phenology (SP) mode
- What resolution?
 - 4x5 to speed up simulation time
- Simulation length?
 - 20 years total, sample last 5 years after 15 years of spin-up

./create_newcase --case \$CASENAME --compset I2000Clm50Sp --res f45_f45

- ./xmlchange STOP_N=20
- ./xmlchange STOP_OPTION=nyears

- One-at-a-time parameter changes for 34 parameters, testing the min/max of their uncertainty ranges
 - 10 PFT-dependent parameters
 - 3 namelist parameters
 - 21 hard-coded parameters

- One-at-a-time parameter changes for 34 parameters, testing the min/max of their uncertainty ranges
 - 10 PFT-dependent parameters [modify params file]
 - 3 namelist parameters [make changes in user_nl_clm]
 - 21 hard-coded parameters [SourceMods]

- 7 model outputs to assess sensitivity
 - 1. Gross Primary Productivity (GPP) \rightarrow FPSN
 - 2. Evapotranspiration (ET) \rightarrow QFLX_EVAP_TOT
 - 3. Transpiration Fraction = Transpiration/ET \rightarrow QVEGT/QFLX_EVAP_TOT
 - 4. Sensible Heat Flux \rightarrow FSH
 - 5. 10cm Soil Moisture → SOILWATER_10CM
 - 6. Total Column Soil Moisture \rightarrow SOILLIQ + SOILICE
 - 7. Water Table Depth \rightarrow ZWT

Assessing parameter sensitivity

Sensitivity* of gross primary productivity (GPP) to parameter perturbations

NCAR

*Sensitivity =
$$|GPP_{max} - GPP_{min}|$$

Ranked sensitivity to 7 outputs Average rank across outputs

Using machine learning to emulate CLM and estimate parameter values

Using machine learning to emulate CLM and estimate parameter values

Hand-tuning parameter values takes a long time (many model runs, trial and error).

How can we speed this process up?

Figure from Rosie Fisher

Using machine learning to emulate CLM and estimate parameter values

- Machine learning goals:
 - 1. Build and train a series of neural networks to predict CLM output, given parameter values as input.
 - 2. Inflate ensemble size of possible parameter combinations using trained networks.
 - 3. Compare network predictions with observations to **estimate parameter values**.

Machine learning by neural networks

Network image: https://www.learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/

Machine learning by neural networks

Network image: http://cs231n.github.io/neural-networks-1/

Machine learning by neural networks

Parameter

values

Perturbed Parameter Ensemble Setup

 100 randomly sampled parameter values from uncertainty ranges for 6 candidate parameters

		P1	P2	P3	P4	P5	P6
Simulations	S1	x1,1	x1,2	x1,3	x1,4	x1,5	x1,6
	S2	x2,1	x2,2	x2,3	x2,4	x2,5	x2,6
	S3	x3,1	x3,2	x3,3	x3,4	x3,5	x3,6
	S100	x100,1	x100,2	x100,3	x100,4	x100,5	x100,6

Parameters

2/7/19

Perturbed Parameter Ensemble Setup

- 100 randomly sampled parameter values from uncertainty ranges for 6 candidate parameters
- CLM5 with year 2000 forcing and satellite phenology mode, 4x5 resolution, 20 years total, sample last 5 years

Perturbed Parameter Ensemble Setup

- 100 randomly sampled parameter values from uncertainty ranges for 6 candidate parameters
- CLM5 with year 2000 forcing and satellite phenology mode, 4x5 resolution, 20 years total, sample last 5 years
- Begin training neural network on output from 100 PPE simulations

Begin training on simple global mean metric

Distribution of global mean gross primary productivity (GPP, µmol m⁻²s⁻¹)

K. Dagon

Build and train a neural network to predict land model output based on parameter values

Build and train a neural network to predict land model output based on parameter values

Build and train a neural network to predict land model output based on parameter values

Assessing network performance

K. Dagon

	Input (1000 parameter sets; 6 parameters)						
	P1	P2	P3	P4	P5	P6	
S1	x1,1	x1,2	x1,3	x1,4	x1,5	x1,6	
S2	x2,1	x2,2	x2,3	x2,4	x2,5	x2,6	
S3	x3,1	x3,2	x3,3	x3,4	x3,5	x3,6	
S1000	x1000,1	x1000,2	x1000,3	x1000,4	x1000,5	x1000,6	

Increase the ensemble size from 100 to 1000

parameter values.

	P1	P2	Р3	P4	P5	P6
S1	x1,1	x1,2	x1,3	x1,4	x1,5	x1,6
S2	x2,1	x2,2	x2,3	x2,4	x2,5	x2,6
S3	x3,1	x3,2	x3,3	x3,4	x3,5	x3,6
S1000	x1000,1	x1000,2	x1000,3	x1000,4	x1000,5	x1000,6

Input (1000 parameter

sets; 6 parameters)

Run through trained neural network

Emulated land model output! How good are these predictions? Can we use them to constrain parameter values?

Comparing with observations

Parameter estimation!

Parameter estimation!

Testing the emulator

Making progress...

Regional performance needs improvement

Regional performance needs improvement

• Assess *multiple metrics* (e.g., mean and *spatial variability*)

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty
- Use multiple neural network configurations to span *prediction uncertainty*

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty
- Use multiple neural network configurations to span prediction uncertainty
- Apply uncertainty framework to *different models/model configurations*

K. Dagon

Summary

- We can reduce uncertainty in land surface models by studying parameters.
- Machine learning can help in **climate model emulation**
- Land model emulator used to estimate parameter values by comparing with observations.

Summary

- We can reduce uncertainty in land surface models by studying parameters.
- Machine learning can help in **climate model emulation**
- Land model emulator used to estimate parameter values by comparing with observations.

github.com/ESCOMP/ctsm

Questions?

Contact: kdagon@ucar.edu

Backup Slides

Diagnosing skewness in global mean GPP

Train on spatial variability

• Use the spatial variability of GPP from 100 ensemble members (as condensed by singular value decomposition) to train the neural network

