Implementing plant hydraulics in the
NCAR Community Land Model (CLM)

and the implications for vegetation water stress
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Motivation:

Land is the critical
interface through which
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environmental change
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biogeochemistry, anthropogenic land use, and ecosystem dynamics
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Vegetation adjust to evolving
environmental conditions

leaf area and orientation
biochemistry
stomatal conductance

..among others

How does this affect the terrestrial
carbon/water cycles?

Dry leaves avoiding the sun
ZF2 Flux Tower: Manaus, Brazil
Photo Credit: Dr. Charlie Koven

Cover of New Phytologist, 219:3

Special Issue on
Drought Impacts on Tropical Forests
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CLMS5 uses the Medlyn stomatal conductance model*

g,: stomatal conductance
g,: Medlyn intercept parameter
g,: Medlyn slope parameter

1\ A
D: Vapor pressure deficit g: ~ go —|— 1 I g
A: Photosynthesis \/ D Ca

Ca: CO2 concentration

*See:
Medlyn et al. 2011 (GCB)
Franks et al. 2018 (GCB)
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CLMS5 uses the Medlyn stomatal conductance model*

g,: stomatal conductance
g,: Medlyn intercept parameter
g,: Medlyn slope parameter
D: Vapor pressure deficit g

. S
A: Photosynthesis
C,: CO, concentration

Increase stomatal conductance.... What's missing?
e higher transpiration
e higher photosynthesis

*See:
Medlyn et al. 2011 (GCB)
Franks et al. 2018 (GCB)



Stomatal conductance models often need:
a water stress factor (8) to account for soil moisture

Relative surface
conductance

VPD (kPa)

Novick et al. 2016: Nature Climate Change
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Relative surface

conductance

Stomatal conductance models often need:
a water stress factor (8) to account for soil moisture

VPD limitation

dominates

VPD (kPa)

Soil moisture
limitation
dominates

VPD (kPa)

Novick et al. 2016: Nature Climate Change



CLM Method for calculating g
(before CLM5)

Y. water potential in soil layer /

r: root fraction in soil layer i nlevsoi

o ,3 _ Z ro - ‘"Psoil,i — Pc

soil water potential when stomates =1 Po — DPc
are fully closed (parameter)

P,
soil water potential when stomates
are fully closed (parameter)



CLM Method for calculating g
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How | got started
with CLM

e March, 2015

e LMWG Winter Meeting
(happening again next
week)

e Notyet using CLM in any
capacity

e Toy model results on
what it might look like to

implement a  function ISOHYDRICITY AND
Slant hydradlic theory ANISOHYDRICITY IN CLM:
A PROTOTYPE STUDY

Daniel Kennedy, Pierre Gentine,

Columbia Universi
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My pitch: | .

March, 2015

LMWG Winter Meeting
(happening again next
week)

Not yet using CLM in any
capacity

Toy model results on
what it might look like to
implement a g function
that is more in line with
plant hydraulic theory

Prognose leaf water potential (y,__.)
Use y, . to calculate s

5 I
ISOHYDRICITY AND
ANISOHYDRICITY IN CLM:

A PROTOTYPE STUDY

Daniel Kennedy, Pierre Gentine,

Columbia University




My pitch:

Beta
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Water stress: Anisohydric
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1. Prognose leaf water potential (y )
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Water stress: Isohydric
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Water balance errors

Timeline:

March 2015 - LMWG winter meeting
April 2015 - 2nd visit to discuss further
Sept 2015 -1 year point simulation
Jan 2016 - 3rd visit, Dan learns how to
use CLM properly
Jan-Mar 2016 - many various errors in
pursuit of a global simulation

subroutine setExposedvegpFilter(bounds, frac_veg_nosno)
1

!DESCRIPTION:
Sets the exposedvegp and noexposedvegp filters for one clump.

The exposedvegp filter includes 1 for which frac_veg_nosno > 0. noexposedvegp
includes points for which frac_ve sno <= 0. However, note that neither filter

includes urban or ke points! I
Should be called within a loop over clumps.
Only sets this fllter in the main 'filter' variable, NOT in ;

1

1

1

1

1

1

1

1

1

]

! filter_inactive_and_active.
| |
1

1

1

]

u

1

Note that this is done separately from the main Filters routine, because it may
need to be called at a diffe time in the dMv loop.
'USES:
se decompMod , only : BOUNDS_REVEL_CLUMP L
! 'ARGUMENTS: |}
type(bounds_type) , intent(in) :: bounds
frac_veg_nosno( bounds%begp: ! fraction of vegetation not covered by snow|

integer , intent(in) ::
1
! ILOCAL VARIAB, :
integer :: nc ! clump index
integer :: fpily ! filter index
integer :: p ! patch index

! filter counts

|

integer :: fe, fn
ter :: subname = 'setExposedvegpFilter'

|
1 == BOUNDS_LEVEL_CLUMP, e sourcefile, __LINE__))
(frac_veg_nosno) == (/bounds p/)), errMsg(sourcefile, __LINE__))

nc = bounds%clump_index I}

character(len=x), pa
1

SHR_ASSERT (bounds%le
SHR_ASSERT_ALL( (ubo

fe
fn
do

0

0

p = 1, filter(nc)%num_nolakeurbanp
= filter(nc)%nolakeurbanp(fp)

£
p
if (frac_veg_nosno(p) > @) then
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Mar 2016 - Achieve global simulation

subroutine setExposedvegpFilter(bounds, frac_veg_nosno)
1
!DESCRIPTION:
Sets the exposedvegp and noexposedvegp filters for one clump.

The exposedvegp filter includes points for which frac_veg_nosno > @. noexposedvegp
includes points for which frac_veg_nosno <= 0. However, note that neither filter
includes urban or lake points!

Should be called from within a loop over clumps.

filter_inactive_and_active.

Note that this is done separately from the main setFilters routine, because it may

1
1
1
1
1
1
1
1
!
! Only sets this filter in the main 'filter' variable, NOT in
1
1
]
! need to be called at a different time in the driver loop.

1

]

u

1

'USES:
se decompMod , only : BOUNDS_LEVEL_CLUMP
! 'ARGUMENTS:
type(bounds_type) , intent(in) :: bounds
frac_veg_nosno( bounds%sbegp: ) ! fraction of v

integer , intent(in) ::
1

! ILOCAL VARIABLES:

integer :: nc ! clump index
integer :: fp ! filter index
integer :: p ! patch index
integer :: fe, fn ! filter counts

character(len=x), parameter :: subname = 'setExposedvegpFilter
1

SHR_ASSERT (bounds%level == BOUNDS_LEVEL_CLUMP, errMsg(sourcefile, __LINE__))
SHR_ASSERT_ALL( (ubound(frac_veg_nosno) == (/bounds%endp/)), errMsg(sourcefile, __LINE__))

nc = bounds%clump_index

fe =10

fn=20

do fp = 1, filter(nc)%snum_nolakeurbanp
p = filter(nc)%nolakeurbanp(fp)
if (frac_veg_nosno(p) > @) then

ation not covered by snowj|
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Success!

Timeline:

March 2015 - LMWG winter meeting

April 2015 - 2nd visit to discuss further

Sept 2015 -1 year point simulation

Jan 2016 - 3rd visit, Dan learns how to
use CLM properly

Jan-Mar 2016 - many various errors in

pursuit of a global simulation
Mar 2016 - Achieve global simulation
June-Sept 2016 - extended visit to
finalize PHS

July 2016 - PHS is accepted for CLM5
as the default vegetation
water use scheme
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Plant 1) Modeling veg. sun
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Hyd raulid water potential is
Interesting in and

Stress of itself

2) Improvement in
model structure

from hydraulic

rear,shade

model vegetation
water potential

theory
e CLM already models
soil water potential
over a discretizp<
soil column 3) Enablesa new v
e We add four ne set of research soil, 1
water potentia questions within Vsoil,2
nodes through the ESM context .
vegetation
wsoil,n
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PHS transpiration
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PHS transpiration
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PHS transpiration
SOI UtiO n PHSI: Supplyland Den',and

200

e Supply increases when you
lower leaf water potential

—

a1

o
T

solution

Transpiration Demand
Plant Water Supply

e But water stress also increases

e Which leads to lower
transpiration demand

Transpiration (W/m2)

100 |
e Transpiration solution matches
supply with demand
50
O 1 Il 1
-3 2.5 -2 1.5 -1 -0.5

Leaf Water Potential (MPa)



What about a
sunnier day?

0 T e
e Still matches supply with
demand
e More light leads to increase in < 150+ g
unstressed GPP/Transpiration = Transpiration Demand
e New solution E Plant Water Supply
N c | T T TS N Sunnier Day
e More transpiration 2100 -
e Lower leaf water potential B
. . o
e (associated with lower () 2
©
= 50} i
O 1 1 L 1
-3 2.5 -2 1.5 -1 -0.5 0

Leaf Water Potential (MPa)



CLM5 models veg. water potential

Reflecting the expected:

diurnal cycle

Water Potential

(MPa)

(a)

N

6 12 18 24
Hour




CLM5 models veg. water potential
Reflecting the expected:

seasonal cycle

Midday Water

Potential (MPa)




Caxiuana National Forest, . . Stress vs

Brazil s UPD

(and soil moisture)
Soil Moisture Stress
e driven by soil moisture W
o (CLM45) B ' . g The stress function now

:...,..‘_,., : '.'Z..:."'f-"."'-' '..' .+ (b) depends on

atmospheric dryness
Plant Hydraulic Stress lin. (vapor pressure deficit)
e responds to both: [ AR
o soil moisture [ .- e TN :
o VPD T Data subdivided by

e CLM5 R L root-zone soil moisture

wettest LA A P W e 1Tl

driest o il : (q)

intermediate 0 1 2 3
VPD (kPa)
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PHS implements
mechanistic
Root Water Uptake

Caxiuana, 2002
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PHS implements
mechanistic
Root Water Uptake
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PHS yields SMS
iImproved soil
moisture

dynamics

SMS root zone is too
dry during dry
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Transpiration:
comparison with
observations
e |Improvement with PHS
in RMSE and R?

e (Single site)
o Caxiuana, Brazil

SMS

PHS

R%= 0.742
RMSE-= 0.508

4 5 6
Observed (mm/d)



Transpiration:

) ) ; AMB . TFE
comparison with S _
observations €4 £
3 o
e Plotting transpiration: 9. <.
model - observations | &5l
e Linerepresents median 3 | | . 3 | | |
e Shading spans 9 2 A 0 " 2 A 9
Soil Potential (MPa) Soil Potential (MPa)

interquartile range

e Bin widths are °T °
o PHS, 0.05MPa g g2

o SMS, 0.2 MPa ET E

o n>=10days e == 3
e PHS improvements B I
derive from relationship PHSQ 27 il

betwe?n transplratlon 1 08 06 -04 -02 0 4  -08 06 -04 02 0
and soil potential Soil Potential (MPa) Soil Potential (MPa)



where to find more info

CLM Technical note

Vit
e Section 2.1 Kk sunlit-leaf
e cesm.ucar.edu/models/cesm?2/land/ =
The code Pl t Ystem SVAYAY, Eito
e https//github.com/ESCOMP/ctsm/tree/ an Ky Wihade-leaf
master/src/biogeophys .
e PhotosynthesisMod.F90 Hyd rau | IC k
e SoilWaterPlantSinkMod.F90 Stl’eSS °
The paper - -
e Implementing plant hydraulics in the Yook L ANAAAAN — \llsoil,l
Community Land Model, version 5 v
—/\ N\ VANN—
e Kennedy et al. 2019, JAMES A o Vel




next week...
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thank you!

Special thanks to:
e Co-authors and the NCAR LMWG
e Columbia Water Center
e NCARCISL
e Data providers

slides online;
goo.gl/GYTKYC




