

Hydrology in the Community Land Model

Sean Swenson Terrestrial Sciences Section

What is Hydrology?

a) the study of water

What is Hydrology?

a) the study of water

 b) the science that encompasses the occurrence, distribution, movement and properties of the waters of the Earth and their relationship with the environment within each phase of the hydrologic cycle. *

What is Hydrology in CTSM?

a) the fluxes of water into and out of the land

b) the redistribution of water within the land

What is Hydrology in CTSM?

Hydrology

a) the fluxes of water into and out of the land

b) the redistribution of water within the land

The movement of **water** is inextricably linked to the flow of **energy** and the life cycle of **vegetation**

From: Technical Description of version 5.0 of the Community Land Model (CLM)

The Water Balance

$\mathbf{P} = \mathbf{E} + \mathbf{R} + \Delta \mathbf{S}$

P = Precipitation
E = Evapotranspiration
R = Runoff
S = Storage

Hydrologic models have different objectives

Flood Forecasting \Rightarrow **R**

NWP, Climate Prediction \Rightarrow **E**

Drought Monitoring, Groundwater ⇒ S

Different objectives lead to different model structures

1-D ⇒ Darcy Flow (Infiltration/Recharge)

2-D \Rightarrow River Routing

3-D ⇒ Saturated Flow (Groundwater)

CLM is tasked with simulating *all* of these phenomena...

...therefore, *trade-offs* will be made.

Precipitation

 \Rightarrow Partitioning between rain and snow, or between stratiform and convective

⇒ Canopy interception, storage, and throughfall

Evaporation

⇒ Evaporation from Soil / Canopy / Snow / Surface Water

⇒ Transpiration from vegetation

Runoff
 ⇒ Surface Runoff (Infiltration and/or
Saturation Excess)
 ⇒ Subsurface Runoff (Baseflow)
 ⇒ River Routing

Storage

- ⇒ Soil Moisture
- ⇒ Groundwater and water table depth
- \Rightarrow Perched water table
- ⇒ Canopy water
- ⇒ Surface water
- ⇒ Snow

Canopy Hydrology

- Section 2.7.1 of the CLM Tech Note
- Interception / throughfall
- Leaf water storage and wetted fraction
- Evaporation from leaf surfaces

Canopy Hydrology And Evapotranspiration Partitioning

Ground Evaporation: 24%

Canopy Evaporation: 23%

Transpiration: 53%

Leaf Wetted Area

p=0.50

p=0.05

p=0.20

Leaf Wetted Area

Leaf Wetted Fraction

Canopy Hydrology And Evapotranspiration Partitioning

Ground Evaporation: 21%

Canopy Evaporation: 18%

Transpiration: 61%

Runoff and Surface Water Processes

- Section 2.7.2 of the CLM Tech Note
- Surface runoff
- $\boldsymbol{\cdot}$ Saturated area
- Subsurface runoff
- River routing
- Surface water (wetlands)

The water table determines the fraction of the area that is saturated

Saturated areas produce surface runoff

Fmax variable on surface data file determines maximum saturated fraction

Dry Surface Layer (DSL)

Figure 9. Estimated thickness of the dry surface layer (DSL) during transient evaporation. The line indicates the approximate trend. Inset: Conceptual structure of near-surface transition layer used for estimating thickness of the dry surface layer (DSL) with thickness (z) and thermal conductivity (λ).

Soil Evaporative Resistance

Surface Soil Moisture vs Soil Resistance

Section 2.5.2 of CLM Tech Note

Little infiltration – precipitation rapidly returned to atmosphere Larger infiltration events during winter – evaporation peaks during summer

Soil Moisture Redistribution

- Section 2.7.3 of the CLM Tech Note
- Moisture form of Richards equation with adaptive sub-stepping
- Water moves due to gravity and gradients in soil matric potential

Soil model

Treats processes such as:

- Soil moisture redistribution
 - Infiltration
 - Darcy flow
 - Recharge
- Soil moisture phase change
- Soil temperature redistribution

Default structure has 20 layers of variable thickness, spanning about 8 meters depth

• Thermal calculations use additional deep layers

a) Soil moisture (% saturation)

b) Soil temperature (°C)

Stippling indicates frozen soil

Percent sand

Soil Hydraulic Properties

Soil Hydraulic Conductivity

Adaptive time stepping method for soil water distribution

Variable time step length depending on solution error

Eliminates numerical instabilities in Richards equation solution

Slide courtesy J.Volk, U. Nevada

Groundwater and Water Table Dynamics

- bulk aquifer layer
- bedrock (zero vertical flux) lower boundary
- subsurface discharge depends on water table depth

Soil Depth

- deep soil / variable soil depth
- high vertical resolution soil

_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	-	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	-	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
-	-	-	-	_	-	_	-	-	-	_	_	_	-	-	_	-	-	_	_	-
	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	
-	-	-	_	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
-	-	-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
	_	_	_		_		_	_					_	_		_	_			
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_																				_
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_																				_
_	-	-	_	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	_	_	_	_	-	-	_	-	-	_	_	_	_	-	-	-	_	
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
-	_	_	_		_		_	_			_		_	_		_	_			-
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-
-	_	_	_		_		_	_			_		_	_		_	_			-
	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	
Ξ.	_	_	_	-	_	_	_	_	-	_	_	_	-	_	_	_	-	_	_	-
-	_	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_	-	-	-	_	-	_	-	-	_	_		_	_	-	_	-	-	_	_	
				_		_			_	_		_			_			_	_	
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_	-	-	-	_	-	_	-	-	_	_		_	-	-	_	-	-	_	_	
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	_	-	_	-	-	_	_	_	_	-	-	_	-	-	_	_	-
_	-	-	-	-	-	_	-	-	_	-	-	_	-	-	-	-	-	_	-	۰.
-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
_																				
-			-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	
-	-						-	-		-		-	-	-	-	-		-		
-	_	_	_	-	_	_	_												_	
-	-	-	-	-	-	-	_												_	
-	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	

E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
È	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	I	I	I	I	I	I	I	I	I	I	I		I	I	I	I	I	I	I	I
E	I	-	I	I	-		I	I	I	I	I	-	I	-	I	I	-	I	I	
	-			-	-		-	-		-	-		-			-			-	-
E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
E	_	-	_	_	-	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_
⊢		_			_							_		_			_			
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
E .																				
F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
⊢.	_	-	_	_	-	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
⊢		_			_	_					_	_	_	_	_	_	_	_	_	_
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Γ.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
F.	-	-	-	_	_	_	-	-	-	-	-	_	-	_	_	-	_	-	_	-
1.																				
																	_			
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
ᄂ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
г.		_	_		_	_			_			_		_	_			_		_
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
F	-	_	_	_	_	-	-	-	_	-	-	_	-	_	_	-	-	_	_	_
I 1																				
		_			_							_		_			_			
⊢.	_	-	_	_	-	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_
г.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	_																	
	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	-	-	_	-	-	_	-	-	_	-	-	_	-	-	-	-	-	_	-	-
Ē	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	į	Ē	-	-	-
	-	-	-	Ē	-	-	-	2		-	-	-	-	-		2	-	-	-	-
	-	-			-	-	-		-	-	-		-	-	-	-	-	-	-	-
	-	-	-		-	-	-		-	-	-	2	-	-	-		-	-	-	-
	-	-	-		-	-	-		-	-	-	2	-	-	-	-	-	-	-	-
	-	-			-	-	-		-	-	-			-	-			-	-	
	-	-			-	-	-		-	-	-				-				-	
	-	-	-		-	-	-		-	-	-	2	-	-	-			-	-	-
	-	-			-	-			-	-	-			-	-			-	-	
	-								-	-	-								-	
	-									-									-	
	-					-				-				-	-				-	
	-	-			-	-								-	-				-	
	-	-																		
	-	-								-										
		-												-					-	
	-																		-	
																				-

PRELIMINARY GLOBAL MAP OF DTB ESTIMATES

Overall Depth to Bedrock (~1 km resolution)

Slide courtesy M.Brunke, U. Arizona

River model

- Routes runoff to the oceans
- Flow directions are obtained from an input dataset
- Calculates water volume and discharge

Model for Scale Adaptive River Transport

Proudly Operated by Battelle Since 1965

- Hillslope routing accounts for event dynamics and impacts of overland flow on soil erosion, nutrient loading, etc.
- Sub-network routing: scale adaptive across different resolutions to reduce scale dependence
- Main channel routing: explicit estimation of in-stream status (velocity, water depth, etc).

(Li et al., JHM, 2013)

Model Validation Tools

Ideally, should be:

- Global
- Directly comparable to modeled process/state/flux
- Same spatial / temporal scale
- High accuracy
- Long record

In reality, no datasets meeting these criteria exist...

0.50

0.01

Soil Moisture Networks

Top panel: CLM soil moisture Bottom: Observed soil moisture

River Discharge

Gridded Model-Data Synthesis Products

Examples: FLUXNET-MTE, FLUXCOM

Top panel: FLUXNET-MTE Bottom: CLM Annual Mean Evapotranspiration

FLUXNET-MTE

Columbia River Basin Evapotranspiration

Red: FLUXNET-MTE Blue/Green: CLM

GRACE Total Water Storage

Top panel: GRACE Bottom: CLM

GRACE Total Water Storage

Columbia River Basin Total Water Storage

Red: GRACE Blue/Green: CLM

CLM Application Example: Anthropogenic Groundwater Withdrawal

Smoothed

GRACE - CLM4

NW Iran

Human-induced groundwater changes can be estimated by removing the CLM estimate of TWS from the GRACE estimate of TWS

GRACE TWSCLM TWSGroundwater

Example I Effects of Parameter Change

Hydrologically Relevant Surface Data

Hydrologically Relevant Surface Data

Time Series

lon:300.0/lat:-5.2

Precipitation

1.00

Example: Effects of Modifying the Water Table

ΔZWT = Qdrainage - Qrecharge

Qdrainage = A exp(-f z)

Qsurface = F exp(-g z) Pthroughfall

Runoff

Water Table

Example II Model Structural Change

GRACE Water Storage Comparison

GRACE Water Storage Comparison

Spatially Variable Soil Depth

GRACE Water Storage Comparison

Current and Future Challenges

- Subgrid heterogeneity and covariance of vegetation, soil moisture, surface water and snow
- Within-canopy turbulent fluxes
- Human management and withdrawals
- Groundwater dynamics
- Dynamic lakes
- Hydrological response to land cover change

Questions?