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Models

CAM-5

Zhang-Macfarlane deep convection, Park-Bretherton shallow 

convection and moist PBL, FV-latlon dycore. Resolution shown here 

0.23x0.31

GEOS-5

Relaxed Arakawa-Schubert deep convection with stochastic Tokioka

limits on plume entrainment, Lock et al. PBL,  FV-cubed sphere. 

Resolutions shown here ~28,14,7 km







TC Numbers and Tracks

Based on short runs CAM5 and GEOS5 roughly capture correct 

numbers of storms and distinction between active (2005) and 

and quiet (2006) Atlantic seasons.

Distribution of tracks seems shifted to the east. 



Std CAM5 #1        Std CAM5 #2        

Std CAM5 #3        IBTraCS

Storms with U>33 ms-1: June 1 to Nov 1 2005
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Tropical Cyclones 2005-2006 (May-Dec)

Atlantic Basin Intensities

• GEOS-5 captures the natural variability of tropical cyclone 

formation
• In terms of intensity as well as number of storms

• GEOS-5 at high resolution (14-km) shows a capability to 

develop the most intense tropical cyclones
• 7 Major Hurricanes (category 3, 4, or 5) in 2005 [7 observed]

• 2 Major Hurricanes (category 3, 4, or 5) in 2006 [2 observed]

Above Normal Season Below Normal Season



2006 Season June-November

CAM also captures weak Atlantic season – somewhat 

stronger E. Pacific in 2006 season

Obs. (IBTRACS)CAM5



TC Intensities

Intensity is more difficult to capture

Depends on “slowly” varying BCs like SST, and on noisier 

atmospheric quantities, e.g., shear, dry plumes …

Models tend to produce storms that are more similar to each 

other than they are in nature (Zhao et al 2009)
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Hints of overactivity in intense storms?



Maximum Intensity from Emanuel 1992 …

500km750km

25km

Ts,

T0(150hPa),qa(sfc),pa(sfc)

Minimum possible central pressure depends on a 

few parameters:

-ambient surface pressure

-ambient low-level humidity

-ambient upper-tropospheric temperature

-surface temperature in core region 



Percent Maximum Potential Intensity

This diagnostic should be relatively straightforward to calculate from re-

analysis data as well as model output
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Azimuthal means of s, V and angular mom. 

Shading  - moist entropy s;

solid contours - angular momentum 

dashed contours – wind speed 

T

Lq
pRTcs p  )log()log( (e.g. Emanuel, 2003)

Structure at peak intensity



Azimuthal means of s, V and angular mom. 

Shading  - moist entropy s;

solid contours - angular momentum 

dashed contours – wind speed 
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Structure at peak intensity



Precipitation time series in storm core (black), storm exterior 250-500km+1000 mm d-1 (red). 

Convective precip (dashed), Large-scale precip1 (solid). 

Thin blue lines show surface pressure.      Note overwhelming dominance of LS in cores
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Sensitivity to use of Deep 
Convection Scheme

GEOS-5 attempts to hobble deep convection scheme 
via entrainment limits. GFDL eliminates deep scheme 
(with tuned shallow scheme). CAM5 precip in TC cores 
dominated by large-scale. 

What happens if deep scheme is removed from CAM?



Std CAM5 #1        Std CAM5 #2        

Std CAM5 #3        No Deep Convection Scheme        

Storms with U>33 ms-1: June 1 to Nov 1 2005
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Intensity (mm d-1)

CAM5 - convective

contribution (deep and 

shallow)
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7-km  GEOS-5
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The strong influence of RAS, and a 15 minute time-

step for the moist physics leads to problems within 

the circulation of Hurricane Bill at 7-km resolution:

• a lack of deep convective (heavy) precipitation

• an excess of shallow precipitation

• a very small eye, filled with drizzle
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Using Tokioka limiter to reduce RAS, and a 120 

second time-step for the moist physics improves 

the convection within Hurricane Bill:

• deep convective precipitation within the eye wall

• Banded structure with embedded convection

• Realistic eye diameter, clear of precipitation



Effects of Condensate Loading

Assessed using 0.5x0.5 km non-hydrostatic 
WRF simulation

Tropical ocean convective case (TOGA domain Feb 2006) 



15-min average precipitation rate (Hong and Lim 2006 microphysics)

Dashed lines show 50x50 gp (25km x 25km) squares used to coarse grain WRF fields 

to produce “high-res AGCM” fields 
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w/out loading: 

with loading: 



w/out loading: with loading: 

Coarsened WRF surface P (hPa) Coarsened WRF surface P (hPa) 
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Condensate loading matters – even in (25 km)2 grid boxes

Coarse-grained to (25 km)2



w/out loading: with loading: 

Coarsened WRF surface P (hPa) Coarsened WRF surface P (hPa) 
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Non-hydrostatic effects become detectable 

Coarse-grained to (5 km)2
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Parameterized precipitation loading

Extra condensate pressure is added to “real” 

model  pressure right before horizontal 

gradients are calculated, then removed 



Surface precipitation rate (mm d-1) 
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Net loading at surface (in Pa) as a function of surface precipitation 

rate – for (25km)2 resolution

Dashed red line shows net parameterized

pressure loading from precipitating condensate

as implemented in CAM5
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Intensity (mm d-1)
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PDFs of tropical precipitation (30S-30N) rates Aug 2005

Parameterized precip loading 

in CAM5 (green line) 

removes  extreme rates
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PDFs of tropical precipitation (30S-30N) rates Aug 2005

Parameterized precip loading 

in CAM5 (green line) 

removes  extreme rates



Annual mean precipitation 

CAM5 control

w/ parameterized 

precipitation loading

Bad news: TC number 

also decreases



Std CAM5 #1        Std CAM5 #2        

Std CAM5 #3        w/ parameterized precip loading        

Storms with U>33 ms-1: June 1 to Nov 1 2005
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Precipitation Loading in perspective

Relatively small perturbation to pressure field 
in precipitating regions seems to have large 
effect.  

Same pressure increase could be achieved by re-
evaporating about 1/8-th of condensate column 



Analysis using Precipitation Objects

with

Gregor Skok,
University of Ljubljana

Joe Tribbia
NCAR AMP/CGD



Thresholding only

Smoothing with convolution Thresholding after convolution

Raw precipitation (snapshot)



Objects are tracked in time using overlaps. Could be modified to include 

search radius.



Time 0

Time 1

Time 2

Hope to see transitions from clusters of 

convection to tropical cyclones 

(eventually). Analysis just begun.





Precipitation object tracks (that contained 

winds> 33ms-1 at some point) 

Surface pressure based hurricane/TC 

tracks (winds>33 ms-1 somewhere)

“Feature” tracks June 1 to Nov 1 2005



Precip object tracks September  2005 (originating 10S-25N)

0<Max wind<17 ms-1 17<Max wind<33 ms-1 (TS)     

33ms-1<Max wind (TC/hurricane)     
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Summary and future directions

Models with Dx~10km can capture many important aspects of TC 
climatology but answer depends sensitively on physics tuning

Time to focus on cyclogenesis processes in ~10 km models

Tracks and intensities may have similar biases in current models, 
e.g., eastward shift in tracks, not enough variability in intensity



Convection and Clouds in the Tropics
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The NESL Mission is:

To advance understanding of weather, climate, atmospheric composition and processes;

To provide facility support to the wider community; and, 

To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation
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