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F1G. 7. Interannual variation of hurricane numbers for North Atlantic from 1981 to 2005. IBTrACS observations
(Kruk et al. 2010) (red) and four-member ensemble mean (blue); shaded area shows the simulated maximum and
minimum number for each year from the four-member integrations. Model time series are normalized by time-
independent multiplicative factors so as to reproduce the observed total number. Dotted lines show observed and
model (ensemble mean) linear trends.



Models

CAM-5
Zhang-Macfarlane deep convection, Park-Bretherton shallow

convection and moist PBL, FV-latlon dycore. Resolution shown here
0.23x0.31

GEOS-5

Relaxed Arakawa-Schubert deep convection with stochastic Tokioka
limits on plume entrainment, Lock et al. PBL, FV-cubed sphere.
Resolutions shown here ~28,14,7 km
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TC Numbers and Tracks

Based on short runs CAMS5 and GEOS5 roughly capture correct
numbers of storms and distinction between active (2005) and

and quiet (2006) Atlantic seasons.

Distribution of tracks seems shifted to the east.



Storms with U>33 ms1 June 1 to Nov 1 2005
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Global Tropical Cyclone Tracks 2005
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Number of Storms in CAM (June-Nov 2005)
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Tropical Cyclones 2005-2006 (may-Dec)

Atlantic Basin Intensities
GEOS-5 captures the natural variability of tropical cyclone

formation

In terms of intensity as well as number of storms

GEQOS-5 at high resolution (14-km) shows a capability to

develop the most intense tropical cyclones

- 7 Major Hurricanes (category 3, 4, or 5) in 2005 [7 observed]
- 2 Major Hurricanes (category 3, 4, or 5) in 2006 [2 observed]
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2006 Season June-November

2006/6/1/0 — 2006/11/1/0 Peakwind>30m/s

CAM also captures weak Atlantic season — somewhat
stronger E. Pacific in 2006 season



TC Intensities

Intensity is more difficult to capture

Depends on “slowly” varying BCs like SST, and on noisier
atmospheric quantities, e.g., shear, dry plumes ...

Models tend to produce storms that are more similar to each
other than they are in nature (Zhao et al 2009)
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FI1G. 6. A comparison of observed and model-simulated tropical storm intensity distribution
as characterized by the surface maximum wind speed for the (top) North Atlantic, (middle)
cast Pacific, and (bottom) west Pacific. IBTrACS observations using 1-min maximum sustained
wind at 10 m (black). Model simulation using 15-min (model time step) winds at the lowest
model level (gray).
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Maximum Intensity from Emanuel 1992 ...

THE THEORY OF HURRICANES

Kerry A. Emanuel
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Minimum possible central pressure depends on a

few parameters:

| Annual Reviews

Jrove mmcaleeviews crgferosline -ambient surface pressure
. i P Mok, 191,217 5 -ambient low-level humidity
-ambient upper-tropospheric temperature
-surface temperature in core region

Copyrght ) 99) by Lamsal Revvews Iuc. AN rights rexerved



Percent Maximum Potential Intensity ep, - Pmin 9

2005/6/1,/0 — 2005/10/31/23 Peakwind>20m/s

This diagnostic should be relatively straightforward to calculate from re-
analysis data as well as model output
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Azimuthal means of s, V and angular mom.  s=c_log(T)-Rlog( p) +?q (e.g. Emanuel, 2003)
Shading - moist entropy s;

solid contours - angular momentum Structure at peak intenSity
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Azimuthal means of s, V and angular mom.  s=c_log(T)-Rlog( p) +% (e.g. Emanuel, 2003)

Shading - moist entropy s;

solid contours - angular momentum Structure at peak intenSity
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Precipitation time series in storm core (black), storm exterior 250-500km+1000 mm d-! (red).
Convective precip (dashed), Large-scale precip?! (solid).
Thin blue lines show surface pressure.  Note overwhelming dominance of LS in cores
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Sensitivity to use of Deep
Convection Scheme

GEOS-5 attempts to hobble deep convection scheme
via entrainment limits. GFDL eliminates deep scheme
(with tuned shallow scheme). CAMS5 precip in TC cores
dominated by large-scale.

What happens if deep scheme is removed from CAM?



Storms with U>33 ms1 June 1 to Nov 1 2005
Std CAMS #2
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H U rri cane B | I I 69-hr forecast Initialized
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The strong influence of RAS, and a 15 minute time-
step for the moist physics leads to problems within
the circulation of Hurricane Bill at 7-km resolution:

« alack of deep convective (heavy) precipitation

» an excess of shallow precipitation

« avery small eye, filled with drizzle
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Using Tokioka limiter to reduce RAS, and a 120
second time-step for the moist physics improves
the convection within Hurricane Bill:

» deep convective precipitation within the eye wall
« Banded structure with embedded convection

» Realistic eye diameter, clear of precipitation




Effects of Condensate Loading

Assessed using 0.5x0.5 km non-hydrostatic
WRF simulation

Tropical ocean convective case (TOGA domain Feb 2006)



15-min average precipitation rate (Hong and Lim 2006 microphysics)

wricut_d03_2006—02—-21_17%:30:00 ; AT=500 m, Precip. rate {mam 4™}

I

Dashed lines show 50x50 gp (25km x 25km) squares used to coarse grain WRF fields
to produce “high-res AGCM" fields




Hydrostatic Balance w/ and w/out condensate
loading

Ztop
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Coarse-grained to (25 km)?

with loading: w/out loading:
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Condensate loading matters — even in (25 km)? grid boxes



Coarse-grained to (5 km)?

with loading: w/out loading:
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Non-hydrostatic effects become detectable



Parameterized precipitation loading

surface precip rate R used to for z<7000m
diagnose precipitating condensate R, (X Y1)
densrty pprec /Oprec(X1 y1 Z,t) =
fall
A 7000m

Porec (X, ¥, 2,1) = [ Gppe O2°

7000 m
A

Extra condensate pressure is added to “real”
model pressure right before horizontal
gradients are calculated, then removed

pprec
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Annual mean precipitation

FRECT fqd0C0_nch 2005/0Z.. 2006 /01 Global mean=3.2 W/m"
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Precipitation Loading In perspective

Relatively small perturbation to pressure field
INn precipitating regions seems to have large

effect.

Same pressure increase could be achieved by re-
evaporating about 1/8-th of condensate column



Analysis using Precipitation Objects

with
Gregor Skok,
University of Ljubljana

Joe Tribbia
NCAR AMP/CGD



Smoothing with convolution Thresholding after convolution




Objects are tracked in time using overlaps. Could be modified to include
search radius.
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Hope to see transitions from clusters of
convection to tropical cyclones

(eventually). Analysis just begun. Time 0
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“Feature” tracks June 1 to Nov 1 2005

Precipitation object tracks (that contained Surface pressure based hurricane/TC
, winds> 33ms* at some pomt) tracks (winds>33 ms-? somewhere)
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Precip object tracks September 2005 (originating 10S-25N)
O<Max wind<17 ms-t
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PDFs of object mean vertical motion
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Summary and future directions

Models with Ax~10km can capture many important aspects of TC
climatology but answer depends sensitively on physics tuning

Time to focus on cyclogenesis processes in ~10 km models

Tracks and intensities may have similar biases in current models,
e.g., eastward shift in tracks, not enough variability in intensity



Convection and Clouds In the Tropics
2009-Aug-20 21z 72-hour Forecasts
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THANK YOU

The NESL Mission is:
To advance understanding of weather, climate, atmospheric composition and processes;
To provide facility support to the wider community; and,
To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation




