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Predicting Monsoon
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SUMMER MONSOON RAINFALL

Interannual Variability
30N

20N 4

10N 1

EQ -

105 1

20S

30N

20N 4

10N 1

EQ

1051

208

30N

20N 4

40E 50E 60E  70E  80E  90E  100E  110E  120E  130E  140E

uuuuuuuu

Y

N

The ISO signal is
much larger than
signal in IAV of

monsoon

Amplitude of (s.d.) of
interannual variability
of JJAS precipitation
(mm/day) , (middle)
Amplitude of
intraseasonal variability
(s.d. Of 10-90 day
filtered anomalies
during June 1 — Sept.
30) and (bottom)
climatological hean
JJAS precipigatic

(mm/day).



Potential predictability of
monsoon ISOs

(A) Normalized index (B) Evolution of transitions
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FIGURE 7.2: (A) An index of the monsoon intraseasonal variability defined as the time series of rainfall
anomalies averaged over, 70°-90°E, 15°-25°N and normalised with its own standard deviation. The index
is shown for a typical period of 4 years. Active phases are marked with red circles and break phases are
marked with blue squares. (B) shows the evolution from active to break (in blue) and from break to active
(in red). Average transitions are plotted in thick lines and the spread in transitions in terms of standard

i deviation of different evolutions at each lag are plotted as error bars with corresponding colours.
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For a rainfall index averaged over 70E-90E,15N-25N

Rain gauge data
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FIGURE 7.4 Same as Fig.7.3A, but for high resolution gridded daily rain gauge data (Rajeevan et al.,
» 2006) for the JJAS season of 1951-2003.
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BACKGROUND

»O0pportunities

> Potential predictability of Monsoon ISOs (MISOs)
have increased in recent years compared to previous
decades

»Neena and Goswami. 2010, Q. J. R. Meteorol.
Soc. 136: 583—-592)
»Challenges

> New processes, not known so far, are discovered
to influence event-to-event variability of observed
MISO

‘Manoj et al. 2010, Clim. Dyn

AE®> ‘Neena et al., 2011, JGR
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% Using IMD’s 104 (1901-2004) years daily gridded
rainfall data (1 x 1°) (Rajeevan et al 2008) for the
June to September period, we examined the potential
predictability change of active and break spells .

% In each 15 year window, a normalized ISO index is
constructed by averaging the 10-90 day filtered rainfall
anomalies over the monsoon trough region (70.5 E-90.5 E,
15.5 N-25.5 N) and then dividing by its own standard
deviation, Goswami and Xavier (2003).

% The active and break spells were identified as when the
normalized index was >= +1.0 or <= -1.0 for three or more
consecutive days.

% The peak of each event was identified and signal and
srror estimates were made, starting from these peaks up to
/B8 days lead time.




Goswami and Xavier 2003, empirical method to
estimate the potential predictability of active and
break spells from the observed data.

MNormalized IS0 index
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10-90 day filtered precipitation averaged over Central India
normalized by its own standard deviation for 15 summers
1June-30Sep). Red Circles > Peak wet spells, (active
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= Corresponding to each lead day the signal (amplitude of
the ISO) is found as the variance of 50 days starting from that
particular lead day (covering approximately one complete ISO
event) and averaged over all events.

=  ‘Error’ is defined as the variance among the different
active / break events corresponding to each lead day. For
example, the variance between all peak active (break). days
may be considered ‘initial error’ for the active-to-break
(break-to-active) transitions. Predictability Ilimit for
evolutions starting from active / break peaks is found from
the lead time when the ‘error’ grows and becomes as large as
the signal.

= The potential predictability of any event is sensitively
dependent on the error in estimating the initial condition as

3@l as the strength of the signal. /.V.\/V\'\
SRR




Change in potential predictability of rainfall ISO through a 15
year sliding window .
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Potential predictability of breaks have increased from two
weeks to three weeks and that of active increased, fram

one week to two weeks.



Change in potential predictability of 850hPa vorticity through
a 15 year sliding window .
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The increase in potential predictability of active/break
phases in 850hPa vorticity confirms that observed in

rainfall.



Changes in Initial error Changes in error growth
characteristics
) and

break phases (black). break to active (black).
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There is event to event variability in the magnitude of ISO

Peaks. Thus, monsoon ISO’s seems to have become increasingly more
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= The changing climate seems to have decreased the
predictability of the monsoon weather (Neena,Suhas
and Goswami, 2009) but

= Increased the predictability of.monsoon 1SOs
(active-break spells).

= |s the upscale cascade of errors from small seale
to large scales non-uniform?

= To test this, we carried an extensive study of
Interactions between different scales using non-linear
triad interactions.
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Synoptic-ISO scale interactions

In the recent decades,
the KE transfer is
downscale. i.e. from
ISO to synoptic
scales!!! . Thus the
synoptic scale error
may not be actually
affecting the ISO time
scales.

Rate of kinetic energy exchange

Rate of kinetic energy exchange (15 year running mean)
between ISO and synoptic scale over 60-110E, 5S-27.5N.
_Positive values indicate that ISO gains Kinetic energy,from
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= The potential predictability of active spells has
shown an increase from one week to two weeks while
that for break spells increased from two weeks to

three weeks.

=  The main contribution to the increase in
predictability of active/break phases comes from the
decrease in initial error or the variance among
different ISO events. The ISO phases are becoming
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= The increasing ISO predictability in spite of the
decreasing weather predictability was understood
from nonlinear kinetic energy exchange studies.

- It shows that in recent decades, the energy
transfer is downscale, ie, from ISO to synoptic scale,
whereas, prior to 1980s, ISO was drawing energy
from synoptic scale.

- It was also found that in recent decades the 30-
60 day mode is gaining energy while 10-20 day mode
Is losing energy and their energy exchange pattern
has also undergone a phase reversal. The energized
30-60 day mode may have also favored the ir,crease

sapotential predictability. N\/V\'\
g t NN > %uzj



Analysis of the influence of Equatorial Rossby
waves on the predictability of ISM
active/break spells.

Neena, Suhas and Goswami, 2011, JGR
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=  Active/beak cycles in-monsoon rainfall are brought out by the
30-60 day mode of intraseasonal variability governed by the north
south excursions of the ITCZ and are also influenced by the
westward propagating 10-20 day ISO mede which originates over
either the western Pacific or Bay of Bengal (

= Another factor in the tropical atmosphere which fall in the same
temporal scale and can influence the ISM 1SOs are the Equatorial
Rossby Waves.

= However, not much study has been done to understand the
Influence of ER waves on ISM variability.




Observed n=1 ER Variance (wn -10 to -2, eq. depth 10 to 50m)

(Northern Summer)

Centers of activity : eastern I0, western Pacific and eastern Pacific.

The ER waves being dissipative in nature
It is difficult to identify the

Zeag nal above the noisy background. /.\/.\/V\i\
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( Kiladis and Wheeler, 1995, Wheeler et
al., 2000, Janicot et al., 2010)

Thus these studies present an average picture of the waves and
fail to notice the existence of high frequency planetary scale modes of
the ER wave which are dominant during certain years.



Space time spectra of
OLR for the years of
high PSER activity
around period of 25 days
and wave number 3

Large
amplitude In
the PSER mode
IS seen during
2009 summer
season




Frequency (cpd)

0.5

0.4375 —

0.375 —

=1
X
—
&

0.25

Wavenumber

Note the existence
of significantly
large power in wave
number -3, 15-30
day.

Frequency (cpd)

All seven years

Wavenumber



0.080 _
Symmetric/Background

wave number-frequency
spectra for JJAS, 2009
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Since 2009 exhibits strong ER
activity in the planetary scale,

% o E we examined the evolution of
g 0000 7 the PSER mode more closely
2 0.040 - and investigated its possible
§ 0.020 - influence on the 1ISM 1SOs for

the case of 2009 monsoon

season.
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wave number, 15-30 day
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Here we investigate whether this PSER mode has a role in

== modulating the variability and predictability of ISM in intraseasonal
v and seasonal time scales.




Westward propagating PSER waves during June-August period 2009

Time filtered (15-30 day) OLR anomalies.
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The PSER waves originate
over the eastern Pacific in
third week of June, propagate
westward at a speed of about
6m/s and reach the ISM
domain by third week of July.

Unfiltered OLR anomalies overlaid with space time filtered OLR anomalies.
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It may be noted that
the PSER activity does
not sustain throughout
the season, but is
rather transient.



Five day averages of space-time
filtered (PSER) OLR and wind
anomalies at 200 hPa, starting from
21 June 20009.

Westward propagation of active
(suppressed) convection Is shown
by solid (dotted) line.




Spatial structure of PSER wave - 2009 case
850 hPa

Space time
filtered
anomalies of
OLR (shaded)
and wind
(vectors).
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=  The transient behavior of PSER waves raises the question of what
forces the waves?

- Eastward propagating 1SO of large amplitude can trigger westward
propagating ER modes either through modulation of convective anomalies or
through interaction with north-south oriented mountain ranges on the west
coast of America. The preferable spatial and temporalscales of such ER
waves may also be altered through interactions

=  Westward propagating ER modes may also arise from decouplingwef the
MJO Kelvin Rossby couplet

» RMM1-RMM2 phase space shows
that the MJO activity was weakening
over the eastern Pacific at the time of
generation of the PSER mode.

= This implies a possible assogiation of

A . the PSER mode with the degoliming of
¢ Phase 2. |:'Hl"uil:ll'n.."l1::| 'Phase 3 M3
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negative anomalies.

It is known that the ISM domain experienced a long break
condition from third week of July to second week of August.

We hypothesize that arrival of the divergent phase of the PSER
ver the ISM domain by the end of July mlght , Wi
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Nonlinear KE exchange between 15-30 day scale and 60 day scale at 850 hPa.

KE exchange is calculated using 60 day sliding window starting from
1April 2009
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Negative values indicate the flow of KE from 15-30 dayto
60 day scale.
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Absorbing aerosols facilitate transition ot Indian monsoon breaks
to active spells

M. G, Manoj « PP, C. 5, Devara - 1P, 1), Safai -
B. M. Goswami




Aerosol and Mean Indian Monsoon

s Surface cooling of continent, weakening NS
temp gradient and weakening of monsoon

*»Elevated Heat Pump Mechanism
s+ Strengthening of the monsoon




Warm Normal monsoon
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FiG. 3. Schematic showing the monsoon water cycle (top) with no aerosol
forcing and (bottom) with aerosol-induced elevated heat pump effect. Low-
level monsoon westerlies are denoted by W. The dashed line indicates mag-
nitude of the low-level equivalent potential temperature 6_. Deep convection
is indicated over regions of maximum 6_. (See text for further discussions.)




Aerosols Influence Monsoon 1SOs

s»While there has been some studies to
address the influence on the seasonal mean
monsoon, no study has so far addressed
how aerosols may influence the MISO

“*Do we expect the aerosols to influence
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Hyderabad Guwahati
21 Jun 2009 06 Sep 2009
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Fig. 1 Vertical profile of black carbon asrosol measured by an Aethalometer during CAIPEEX Phase-L.
Significant loading of BC between 1-3 km 1s seen over the stations (a) Hyderabad in central India on June 21,
2009 and (b) Guwahati m north-gast India on September 06, 2009.
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Fig, 2 Standardized OLR anomalies for the period 2000-2009. Long break cyeles (thick black solid cireles)
followed by active spells (thin black circles) together with those breaks immediately not followed by active
episodes (thick red circles).
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Fig. 4 Composite of actual ACD at 530 om during BEA cases: (a) breaks (b) actves. Compostte of AOD
anomaly at 530 nm during (c) breaks (d) actves
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Fig. 5 Composite Aerosol Index during BFA cases: (a) breaks (b) actives (c) break minus active and (d) breaks
composite of seven-day back-trajectories ending at 0000 UTC at the receptor point (80°E: 28°N) over the Indo-
Gangetic Plain for the altitudes 500, 1500 and 3000 m.
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Fig. 7 Composite of actual AOD at 550 nm and Aerosol Index during BNFA and their difference with
corresponding BFA break cases. (a) AOD (BNFA) (b) AOD (BFA minus BNFA) (¢) AT (BNFA) and
(d) AT (BFA minus BNFA)




LATITUDE
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LONGITUDE 1
Fig. 8: Composite anomalies of (a) 850 hPa wind in ms™ and (b) OLR in Wm™ during BNFA cases. (¢) Back-

trajectories ending at 0000 UTC at the receptor point (80°E: 28°N) at three height levels during BNFA.
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Fig. 3 Composite of circulation anomalies in ms™ durmg BFA cases: (a) breaks (b) actives. {c) and (d) are same
as (a) and {b) respectively, but for OLE. anomalies in W™




kx -
. . LS i - r

AV S A R L .
. x\\ \ r N
. P -

FQ4 TR e eerimans e MR = o EQA
- . .

iy " R, '\-\.\_':'-.,.' _ -l A “

R R L T T i i i M Y . § & ab. 1

LRk kll .“\.

S0E BUE 70 BOE  90E  100E 110E 120E 5E 6OE 70E  BOE  90E 100E 110E 120F

=4 =30 =20 =10 0 10 20 30 40

OLR anom
BNFA




Hypothesis

Long Build up of
Break W)  Absorbing
aerosol
Transition "

« moisture conv at

to Active low levels to CI

Heating of 1-3
km layer over CI

Increase in NS
Temp gradient at
low levels
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Fig. 6 (a) Vertical profile showing difference of temperature anomalies (Land minus Ocean) mn °C during BFA
breaks, actives and BNFA spells.
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Fig. 6 (b) Composites of time evolution of temperature difference at 925 hPa between Land and Ocean,
moisture convergence at the same level and rainfall w.r.t. the mid-day of BFA breaks composite.
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Fig. 9: (a) Composites of time evolution of temperature difference at 925 hPa between Land and Ocean.
moisture convergence and rainfall w.r.t. the mid-day of BFA breaks and BNFA composites (b) Time evolution
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Fig. 10 Vertical profile of difference of aerosol-induced heating rate over Land and Ocean during BFA break
and BNFA cases.




Conclusions

¢ Discovered a fundamental aspect of absorbing aerosol
and MISO interaction

¢ By helping transition of breaks to active conditions
Absorbing Aerosols play a crucial role n the MISO
transitions

+»» The fact that those breaks that are associated with
strong convection in the NE region, highlight strong
Interaction between circulation and aerosols

¢ Dynamic aerosol interaction is required for prediction
__and simulation of MISO |
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Thank you
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Mean and variance of among different ISO events during a 15 year
period corresponding to different lead days starting from peak
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—— break to active

The mode of evolution is
another factor determining
potential predictability. A
slower ‘evolving event is
considered te, have higher
potential predictability
than a faster eveling
event.
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