Diagnosis of the MJO in an Aquaplanet General Circulation Model
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1. Introduction

* An MJO in an aquaplanet GCM simulation is
analyzed that shows some characteristics of a
moisture mode

* The model MJO is destabilized by wind-
evaporation feedback, and zonal moisture
advection appears to contribute to eastward
propagation

2. Model Description

* NCAR Community Atmosphere Model 3

« Swapped in a replacement parameterization
for deep convection (we use relaxed Arakawa-
Schubert, Moorthi and Suarez 1992).

* T42 horizontal resolution (2.8° x 2.8°), and 26
vertical levels

* Perpetual March 21 insolation and ozone

Series of 16-year aquaplanet simulations with

idealized SST boundary condition containing

zonal asymmetries and reduced meridional

SST gradient (see Figure 1 below)

.
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Figure 1. SST primary lyzed

3. Eastward Propagation in Unfiltered Fields and Spectra

Even in unfiltered data, many salient features of the MJO
apparent, including 5 m s eastward propagation, and a
period of 40-60 days (Fig 2).

*A strong spectral peak exists at same zonal wavenumber
and frequency as observed (Fig 3).
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Figure 5. Unfitered composite 850hPa wind (m s'') and precipitation (mm day!) as
a function of MJO phase in the simulation. The maximum wind vectors are about 20
m s\, Maximum precipitation exceeds 28 mm day"

5. Composites

* Composites are generated using a similar
method to Wheeler and Hendon (2004)

* Unfiltered composites indicate the presence of a

westerly jet that lags precipitation by about 5

days (Figure 5).

Precipitation and precipitable water anomalies

are nearly exactly in phase (Figure 6), as would

be expected given the strong relationship

between saturation fraction and precipitation
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Figure 6. Composite 20-100 day bandpass fitered precipitation and column-
integrated precipitable water (mm) anomalies for MJO phase 5 in the simulation.
The precipitation contour interval is 4 mm day", starting at 2 mm day”. Negative
contours are dashe
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Figure 7. Composite 20-100 day bandpass fitred precipitation anomalies and anomalous column-
integrated precipitable water budget terms for MJO phase 5in the simulation. Terms include column-
integrated a) precipitable water tendency, b) horizontal g advection, ) vertical g advection, and d)
surface evaporation. Water budget units are mm day-\. The precipitation contour interval is 4 mm
day, starting at 2 mm day". Negaive contours are dashed.

6. Moisture Budget

¢ The vertically-integrated moisture budget is formulated
as follows:

<‘L‘1> ={qv-5) (- Vg) + E-P
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* Figure 7 shows intraseasonal moisture budget

anomalies.

Horizontal advection is (nearly) in quadrature with

precipitation (and PW) and in phase with the humidity

tendency.

« Surface evaporation slightly lags the precipitation
anomalies, with a strong positive covariance

* Horizontal advection is then partitioned such that
overbars represent the 50-day mean and primes the
deviations from the 50-day mean:
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* Advection of anomalous humidity by the total zonal
wind appears to be essential for eastward propagation
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(Figure 8).
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Figure 2. Tme-fongitude ciagrams of 0°5-20°S averaged precipiation (mm
day") and 850 hPa zonal wind (m s for Days 700-800 of the simulation
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Figure 3. Wavenumber-frequency spectra of equatorial (15°S-15°N averaged) precipitation during
m CMAP , right) an ntour interval s 0.02
mm? day?, starting at 0.04 m? s2. Values greater than 0.06 m? 52 are shaded.
4. Precipitation Versus Saturation Fraction
*Precipitation is an increasing and strongly non-
linear function of saturation fraction of the
troposphere (Figure 4).
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Figure 4. Average daily-mean precipitation rate (solid, mm day) versus
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column saturation fraction in the simulation. Precipitation rate is averaged
within saturation fraction bins of width 0.01. The number of observations

per bin (gray-dashed) is also shown.

Figuro 8. Composite unfitered partiioned verticaly-ntegrated zonal q advection anomalies (mm day-) for MJO
phase 5 in the simulation. Brackets represent the 50-day mean, and primes deviations from this 50 day running
mean. The precipitation contour interval is 4 mm day, starting at 0 mm day . Tendency is in units of mm day".
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Figure 9. Same as Figure 8, except for meridional advection

7. Sensitivity Tests

A. Remove wind-evaporation feedback by setting surface
fluxes to climatology (wind driven component dominates
flux)

*WISHE destabilizes the MJO in the model. 30-90 day,
wavenumber 1-3 variance decreases dramatically
without WISHE active (Fig 10)

*Small spatial scale precipitation variability that moves
slowly east is still apparent in the model

B. Use SST distribution with reduced zonal gradient (by
%) to test influence of reduced zonal advection through
reduction in mean zonal wind

*Propagation speed slowed from 4-5 m s to about 2.5 m
s in the simulation with reduced zonal gradient and
reduced westerlies (Figure 11).

C. Zonally symmetric SST distribution taken from a Figure
1 north-south cross section at 150°E.

*Mean easterlies occur everywhere, altering phase
relationship between fluxes and precip, and model MJO
collapses (Figure 12)
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Figure 10, Time-longilude diagrams of 0°S-20°S averaged precipitation (mm day)
and 850 hPa zonal wind (m s-1) for Days 700-900 of the No-WISHE simulation.
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Figure 11. Lag regression of 0°S-20°S averaged intraseasonal (20-100 day) precipitation (colors)
onto a reference 850 hPa zonal wind time series at 141°E in a) the control and b) reduced zonal
SST gradien simulations. Regression coeffcients are scaled by a one siandard deviation value of
the reference time series. Precipitaion anomaly units are mm day"
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Figure 12. As in Figures 2 and 3, but for the zonally-symmetric case

8. Conclusions

*An MJO in an aquaplanet GCM simulation is analyzed
that shows some characteristics of a moisture mode
*The model MJO is destabilized by wind-evaporation
feedback, and appears to propagate eastward through
advection of anomalous humidity by the sum of
perturbation winds and mean westerly flow

*A zonally-symmetric aquaplanet does not support a
robust MJO
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