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ABSTRACT

The predictability of intraseasonal variation in the tropics Iis assessed In the present study by using various statistical and dynamical models
with rigorous and fair measurements. For a fair comparison, the real-time multivariate Madden-Julian Oscillation (RMM) index Is used as a
predictand for all models. The statistical models include the models based on a multi linear regression, a wavelet analysis, and a singular
spectrum analysis (SSA). The prediction limits (correlation skill of 0.5) of statistical models for RMM12 index are at day 15-16 for the multi
regression model, whereas, they are at day 9-11 for the wavelet and SSA based models, respectively. To assess the dynamical predictability,
long-term serial prediction experiments with a prediction interval of every 5 days are carried out with both SNU AGCM and CGCM for 20 years
for the summer period (MJJASO). The prediction limits occur at day around 22 days for both AGCM and CGCM. These results demonstrate
that the skills of dynamical models used in this study are better than those of the three statistical predictions. The dynamical and statistical
predictions are combined using a multi-model ensemble method. The combination provides a superior skill to any of the statistical and
dynamical predictions with a prediction limit of 22-24 days.
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