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The Thermocline Ridge Index (TRI) is of 
particular interest:  Shallow thermocline 
and mixed layer cause strong 
intraseasonal SST variability, including 
short timescale (sub 30-day) ‘cooling 
events’ (Harrison and Vecchi 2001; 
Duvel et. al. 2004; Saji et. al. 2006).

The Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI) 
satellite allows for new insights into air-
sea processes. 
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Introduction:  The Indian Ocean exhibits strong 
SST variability on intraseasonal timescales
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GFDL coupled models:
50 year control runs, with 
1990’s radiative and land use 
conditions, for two models: 

GFDL CM2.1: Atmosphere 
2.5°x2°, ocean ~1°x1° 
GFDL CM2.4: Atmosphere 
1°x1°, ocean ~0.25°x0.25°

Cooling events are diagnosed in observations 
and models using a composite approach

Observations:  
TMI-SST data (1998-2007)

1-d Ocean Mixed-Layer Model 
(Price et. al. 1986): 
“PWP” model forced with NCEP 
Reanalysis-2 fluxes and 
QuikScat winds (1999-2007)

 - We use a composite approach 
to diagnose a large number of 
cooling events.
 - We define a cooling event as:
Sub 30-day SST anomaly ≤ 2.5σ
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The cooling event composite response is 
reproduced in GFDL coupled models

Oceanic processes are important for cooling 
events, in addition to air-sea enthalpy fluxes

 - Air-sea enthalpy fluxes 
precede maximum cooling:  
Cooling events are driven 
by the atmosphere.

 - Air-sea fluxes alone are 
not sufficient to explain 
SST changes.

 -  For GFDL CM2.1, a slab-layer approximation indicates that 
Ekman upwelling is important (Lloyd and Vecchi 2009). 

Ekman upwelling plays a role in cooling events

Cooling events are preconditioned by large-
scale conditions

Cooling events are linked to strong eastward 
convective propogation (MJO)
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a)  CM2.1 preconditioning

b)  CM2.4 preconditioning

c) CM2.4: Plus 30-day Temp anom (k) and current anom (m.s  )-1
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- La Niña/negative IOD 
conditions exist prior to 
cooling events, with 
increased Walker 
circulation.

 - Cooling events are 
preconditioned by a 
shallower thermocline 
in the TRI.

 - Large-scale ocean 
conditions are 
important for cooling 
events; and coupled 
models are 
preconditioned by a 
shallower thermocline.

b) GFDL CM2.1
r = 0.80 (99% sig.)
slope = 0.98 +/- 0.31 (95% con!dence) 
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a) Cooling event index b) Precipitation event index

OLR (5-60 day bandpass) (W.m  )-2 OLR (5-60 day bandpass) (W.m  )-2

 - Hovmoller diagrams 
showing OLR have stronger 
eastward propogation (~5m/s) 
when using an index based 
on cooling events instead of 
precipitation events.

 - Stronger SST cooling 
implies stronger Madden-
Julian Oscillation (MJO) 
signal.

 - Does intraseasonal SST 
variability in the
thermocline ridge region 
influence the MJO through 
ocean-atmosphere coupling?

a) Precip anom (mm. day  ) b) SST anom (K)
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Goals: 
    - Diagnose the physical mechanisms 
responsible for cooling events, in both 
observations and models.

    - Investigate relation between cooling 
events and large-scale conditions. 
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