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Assess intraseasonal forecasts of Results
MJO using POAMA coupled model . .
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Method (consistent with Gotschalck et al 2009):
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3. Project forecast anomalies onto observed
eigenvectors and divide by the square root of
the observed eigenvalues to obtain forecasts
of RMM1 and RMM2.
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4. Score the forecasts of the RMM indices using
the bivariate correlation) and root-mean-
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Stratify by season and by phase
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a, and a, are the verification RMM1 and RMM2
atdayt, and b, and b, are the forecasts for
day t for a lead time of T days. N is the
number of forecasts.
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The bivariate amplitude (RMMA) for the
verification and forecast are 5,

4 Phase plot for hindcast initialised on 19860101
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£ [ ;; %% Scoring RMM appears to be a useful first step
[ MJO predictable for about %z cycle
2r b Little sensitivity to initial phase
The average phase error (ERRphs) as a R Predicted with realistic amplitude (initially too
function of forecast lead time is: . A RN weak) but too slow phase speed: model
o 4 2 . 2 4 shortcomings- improved initialization need to
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