Where we are with Precip, Monsoon and SSECMWEF
MJO in the ECMWF IFS and what we are
still trying/learning
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S. American Monsoon (DJF)
Evolution Det. Precip. Scores from 1995-2008
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» Curves more noisy than the Extratropics because
* Asmaller area
2008 » Atenth the number of stations each day (~175 vs ~ 1900)
* Only D,J,F rather than annual mean
* In a more convective regime(?)
» Absolute scores are less important than trends (days —

gained)
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Pdfs of instantanous Precip fluxes and TCW"ECMWF
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SSMl is from 1D-Var, but underestimates high rain rates (high TCW) as
columns where more than 1/3 of precip is show have been discarded



P oo
Mean Precip versus TCW from 2D Pdf s ECMWF

together with A. Geer
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SSMl is from 1D-Var, but underestimates high rain rates (high TCW) as
columns where more than 1/3 of precip is show have been discarded



P oo
Precip vs total column water relative s ECMWF
humidity

The atmosphere (model) a self-organized critical system ?
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Or just more Precip when the entire column becomes saturated ?

see also Bretherton et al. (J. Clim. 2004), or Fuchs and Raymond & Neelin pcnper's:5
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Wavenumber frequency Diagrams of OLR

a NOAA satellite b Cy31n
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Wavenumber frequency Diagrams of CP & LSP

Large-Scale: Symmetric Tropical RR (32R2)

Convective: Symmetric Tropical RR (32R2)
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o
Better (Kelvin) wave activity, what has change(i?'ECMWF
Use YOTC data set 24h forecasts, redo with pre Nov2007 conv
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e
Lorenz Energy cycle s ECMWF

conversion rates of potential in Kinetic energy

Generation Conversion

@=NQ+aa)= NO+aw +o'e

dt /\

Lorenz efficiency Net heating
factor

R - _
a'w' = F[l +(e=-D]T'w +(e"' -Daq'e

unfortunately locally not whole story as on would need to also consider Ve (V¢)

see also M Steinheimer, M Hantel, P Bechtold Tellus 2008



Precipitation JJA: Sensitivity to Model Formulation

Seasonal integrations
GPCP JJA 1990-2006 33R1(old vdiff)-33R1
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> ECMWF

Precipitation JJA: Sensitivity to Resolution
Seasonal Integrations

GPCP (JJA 1990-2000)
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> ECMWF

Model Adjustment Day 1-10 : JJA 2008
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Initial Process Tendencies JJA 2008: U at 925 hPa cECMWF

High resolution deterministic forecast
33R1

Unit=ms™ over firs of forecas
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Initial Process Tendencies JJA 2008: U at 925 hPa cECMWF

33R1

Unit=ms™ over firs of forecas
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P aa
JJA 2008 u and v 925hPa Analysis Increments VECMWF
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Analysis Increments indicate that the modelled low-level flow over the

Indian Ocean and Arabian Sea (and thus moisture transport into the
monsoon) is too strong.

Are these increments pointing to the root-cause for the monsoon error?



Principal Component

<> ECMWF

PC1&2 of Vel.Pot. Operational Analyses
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EOF?2 leads EOF1 by a quarter period: indicating eastward propagation



<> ECMWF
Analysis Increments (12hr window): T500

T laas
A =4

MJO+

Main problem is not
associated with the
MJO. Need to reduce

wet bias.

MJO-

oMJO

Model “MJO
convection” ~90% of
true signal?




CCECMWF
Initial Tendencies (First 24hr): T500, oMJO
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Convection sensitivity experiment winter
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Convection sensitivity experiment winter: mean state
Precip Obs
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Convection sensitivity experiment winter: mean state

Zonal Average T Difference f127-er40 (12-3 1980-2000)
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Check for vertical stability, daily 6.(T.q,P =1000) —Oesat(T, P)
WPacific North
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Correlations: 700-500RH-Precip CAPE-Precip 250hPaVelpot
for Indian Ocean North & South from 6hly data
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Correlations 500 RH-Precip CAPE-Precip 250hPaVelpot
for Pacific Ocean North & South from 6hlv data
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SCECMWF

Remarks

« ATHENA project: run IFS for 40 years at T159 (125 km) -

T2000 (10 km) resolution. Results barely resolution dependent
but better variability/correlations and tropical storm activity at >40 km

resolutions. See Poster by Emilia Jin and colleagues!

« MJO driven by extratropical Rossby wave activity (resonance
effect) as in Wedi&Smolarkiewicz (JAS 2010)7? Difficult to
proof even with extratropical relaxation experiments

« Overestimation of convection —> supression of convection
and slow build up of CAPE/moisture probably key factor

« Can get MJO for wrong reason= overly cold unstable
troposphere?

« For detailed phase composites and predictability of MJO on
monthly/seasonal time scale in IFS see talk by Frederic Vitart
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Convection modifs for next cycle:

Fc 240h Prec diff (mm/day) 20090716-20090831 Cy36r4-Cy36r3
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Improvements for next cycle due to Conv+Microphysics
Improvements also seen in upper tropical winds and MJO (see Frederic)

Due to decreased shallow convection-surface fluxes-> lesss precip, or
due to improved entrainment/detrainment-> better upper tropospheric
structure or change in stability?

For future my guess is radiation aerosol will be very important to
improve Monsoon



Cellular Automaton o~
belongs to the family of self-critical systems, e.g. forest ECMWF
fires, sand pile, game of life etc.

Aim;

® Improve on the MJO

® Improve on the propagation of convection in general

Technique

® Use e.g regular lat/lon grid, play game of life

® Initialize living cells at convective points, propagate and create
living cells as function of CAPE using certain rules — include
wind speed through probability

® Couple 2D CA field (number of lives) to convection
parametrization by perturbing T,q input profiles (+ [living cells] or
— [no lives] vertical sine function, amplitude 0.2 K, 2% humidity)



<> ECMWF

Cellular Automaton (number of lifes) in IFS

Toy model

in IFS T159 coupled with convection scheme

28



