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Outline 

!  Tropical response to MJO 
!  West African monsoon 

!  Extratropical response to MJO 
!  Direct response:  Rossby wave dispersion 
!  Indirect response:  Modulation of internal extratropical modes 
!  High-latitude deep ocean response 

!  Tropical dynamical ocean response 
!  Pacific: El Nino͂ and deep ocean 
!  Indian Ocean: dynamical ocean feedback mechanism 



MJO core region: tropical warm pool 
MJO cycle: rainfall rate (DJF) 
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MJO tropical teleconnections: 
equatorial wave dynamics 
MJO cycle: sea level pressure 

SLP anomaly: Pa	
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Response of the West African 
monsoon to the MJO 
Observed OLR: JJAS 

Matthews AJ, 2004:  Intraseasonal variability over tropical Africa during northern summer.  J. Climate, 17, 2427-2440 

MJO: reduced convection over 
warm pool 10-20 days earlier 

Leads to enhancement of 
convection over West Africa 



Response of the West African 
monsoon to the MJO  
Model: Equatorial wave 
teleconnections 

!  Mechanism:  “Cold” equatorial 
Kelvin and Rossby waves 
propagate from Indian Ocean to 
Africa and trigger convection 

!  Atmospheric GCM:  HadAM3.   
!  Externally forced MJO 
over warm pool 
!  Suppressed MJO 
convection gives cold 
equatorial Rossby wave 
!  Enhanced African 
convection 

T300 (oC) 
Lavender SL, Matthews AJ, 2009:  Response of the West African monsoon 
to the Madden-Julian Oscillation.  J. Climate, 22, 4097-4116 

OLR line contours 



Tropical response to MJO heating 
Dry atmospheric model (IGCM1) 

!  Model linearised about observed 3-D DJF flow 
!  Added observed time-dependent MJO heating 
!  Equatorial Kelvin/Rossby wave response 
!  200-hPa wind vector anomalies 

!  Red vectors = observed 
!  Shading: u or v wind locally significant at 95% level 
!  Black vectors = model 
!  Pattern correlation coefficient r=0.82 

Matthews AJ, Hoskins BJ, Masutani M, 2004: The global response to tropical heating in the 
Madden-Julian Oscillation during northern winter. Quart. J. Roy. Meteorol. Soc., 130,1991-2011. 



Global structure of MJO 
MJO cycle: 200-hPa streamfunction 

200-hPa NCEP  reanalysis streamfunction anomaly (m2 s-1)	
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Global response to MJO heating 
Dry dynamical model (IGCM1) t=0 days 

(30°N-90°N) 



Global response to MJO heating 
Dry dynamical model (IGCM1) t=6 days 



Global response to MJO heating 
Dry dynamical model (IGCM1) t=12 days 



Global response to MJO heating 
Dry dynamical model (IGCM1) t=18 days 



Direct response to MJO heating 

!  Tropical response 
!  Equatorial Kelvin/Rossby wave response  
!  Established in few days 

!  Extratropical response 
!  Model simulation accurate (high pattern correlations) over 
Pacific and North America 
!  Interpreted as direct Rossby wave response on 3-D flow 
!  Established in two weeks 
!  MJO heating changes substantially in this time 



Indirect response to MJO heating 
MJO and extratropical regimes (NAO) 

Cassou C,2008: Intraseasonal interaction between the Madden-Julian 
Oscillation and the North Atlantic Oscillation. Nature, 455, 523-527. 



Antarctic 
Circumpolar 
Transport 

Southern 
Annular 
Mode 

Madden- 
Julian 
Oscillation 

Matthews AJ, Meredith MP, 2004:  Variability of Antarctic circumpolar transport and the southern annular mode 
associated with the Madden-Julian oscillation. Geophys. Res. Lett., 31, L24312, doi:10.1029/2004GL021666.  

MJO and southern hemisphere 
extratropics 



Ocean bottom pressure recorders 
~10 year daily mean time series 



OLR, 1000-hPa wind regressed onto  
–SD2 (X) bottom pressure 
May-October 

X 



OLR (grey shading).   
200-hPa vorticity (colour shading), streamfunction (line contours), wind (vectors) 

Mechanism: Upper tropospheric 
Rossby wave propagation 
Day -10 



Mechanism: Upper tropospheric 
Rossby wave propagation 
Day 0 

OLR (grey shading).   
200-hPa vorticity (colour shading), streamfunction (line contours), wind (vectors) 



Ocean MJO dynamical teleconnections 
MJO-forced oceanic equatorial Kelvin 
waves trigger El Niño 

McPhaden MJ, 1999: Genesis and evolution of the 1997-98 El Nino. Science, 283, 950-954. 



Dynamical ocean MJO component 
Deep oceanic Kelvin wave 

Matthews AJ, Singhruck P, Heywood KJ, 2007:  
Deep ocean impact of a Madden-Julian Oscillation 
observed by Argo floats. Science, 318, 1765-1769. 

!  Deep structure measured by 
Argo floats 
!  Oceanic equatorial Kelvin 
wave forced by MJO wind 
stress 
!  Extends down to at least 
1000 m 



Ocean-atmosphere dynamical  
teleconnection feedback mechanism 
for the MJO 

!  MJO defined by Wheeler-
Hendon index 
!  Composite satellite sea 
surface height (SSH) 
anomalies 
!  Equatorial Kelvin wave 
!  Reflects into equatorial 
Rossby wave at Sumatra 
!  Coastal Kelvin wave 
!  Aliasing: MJO time scale 
< ocean wave time scale 

Webber, BGM, Matthews AJ, Heywood KJ, 
2010: A dynamical ocean feedback mechanism 
for the Madden-Julian Oscillation. Quart. J. 
Roy. Meteorol. Soc., 136, 740-754. 



!  Time-lagged 
composites, with 
respect to Wheeler-
Hendon phase 1 
!  Day -30: downwelling 
Kelvin wave in east 
Indian Ocean 
!  Day -10: reflects into 
westward-propagating 
downwelling Rossby 
wave 
!  Day 60: reaches west 
Indian Ocean, induces 
positive SST anomaly 



Equatorial Rossby wave propagation 
Hovmoller diagrams (2-4N, 2-4S) 
Northern summer (May-October) 

SSH SST, 
surface 
flux 



Triggering of convection by ocean 
Rossby wave 
Hovmoller OLR (5S-5N) 

May-October 



Ocean teleconnection feedback 
mechanism for MJO 
Triggering the next-but-one MJO 



Conclusions 
Effect of MJO heating in core region of 
tropical warm pool 

!  Excites atmospheric equatorial Kelvin and Rossby waves 
!  Established in a few days 
!  Can destabilise and trigger convection over west African 
monsoon 

!  Excites atmospheric extratropical Rossby waves 
!  Established in two weeks 
!  Can be simulated accurately if MJO heating and basic state 
correct 
!  Affects occurrence of internal midlatitude modes (e.g., NAO) 
!  Affects high latitude ocean circulation through surface wind 
anomalies 

!  Excites oceanic equatorial Kelvin and Rossby waves 
!  Deep Kelvin waves in Pacific 
!  Delayed oscillator type mechanism in Indian Ocean feeds back 
onto MJO (next-but-one event or low-frequency tail) 





Mechanism: Upper tropospheric winds 
extend to surface 
Zonal wind section at 150°E 

!  Tropical anomalies are baroclinic: opposite sign between upper 
and lower troposphere 
!  Extratropical anomalies are barotropic: upper tropospheric 
anomalies extend down to surface 



Ocean component of MJO 
MJO cycle: sea surface temperature 

SST (oC) 

OLR line contours: solid = positive, dotted = negative 



Time-longitude (Hovmoller) diagram 
OLR anomalies (20oS-20oN) 
coloured 
Zonal wind anomalies at 
60oS, line contours 



Heading 

!  Some text 


