Week 1 Agenda
Carbon-climate connections in the Earth System
ASP Student Workshop
Monday 29 July (ML, Fleischmann Bldg)
08:30–09:00 | Matthew Long, Introductions |
09:00–09:55 | David Schimel, Carbon and climate on geologic timescales What mechanisms drive variability over geologic timescales? Suggested reading: Doney, S. C. and D. S. Schimel, 2007: Carbon and Climate System Coupling on Timescales from the Precambrian to the Anthropocene. Ann. Rev. of Env. & Res., 32 (1), 31–66, 10.1146/annurev.energy.32.041706.124700. {pdf} Shakun, J. D., et al., 2012: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 49–54, doi:10.1038/nature10915. {pdf} Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups, 2001: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686–693, doi:10.1126/science.1059412. {pdf} |
09:55–10:15 | Break |
10:15–11:10 | Peter Gent, A history of coupled climate modeling The development of coupled climate models from the mid-1970s to present day. Suggested reading: Gent, P., 2012: Coupled climate system modeling. Encyclopedia of Sustainability Science and Technology, Springer Publishing. {pdf} Gent, P., In press: Coupled models and climate projections. Ocean Circulation and Climate, G. Siedler, S. Griffies, J. Gould, and J. Church, Eds., Academic Press, 2d ed. {pdf} |
11:10–12:05 | Britton Stephens, The global carbon cycle as seen by the atmosphere Suggested reading: Keeling, C. D., R. Bacastow, A. Carter, S. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roelozen, 1989: A three-dimensional model of atmospheric co2 transport based on observed winds: 1. analysis of observational data. Washington DC American Geophysical Union Geophysical Monograph Series, Vol. 55, 165-236. {pdf} Tans, P. P., I. Y. Fung, and T. Takahashi, 1990: Observational Constraints on the Global Atmospheric CO2 Budget. Science, 247, 1431-1438, 10.1126/science.247.4949.1431. {pdf} Stephens, B. B., et al., 2007: Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Proles of Atmospheric CO2. Science, 316, 1732-1735, 10.1126/science.1137004. {pdf} Peylin, P., et al., 2013: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences Discussions, 10, 5301-5360, 10.5194/bgd-10-5301-2013. {pdf} |
12:05–13:05 | Lunch |
13:05–14:05 | Susan Solomon, Radiative forcing by anthropogenic constituents A review of radiative forcing by a variety of mechanisms, drawing from the IPCC (2007) approach and framework. Suggested reading: Forster, P., et al., 2007: Changes in atmospheric constituents and in radiative forcing. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller, Eds., Cambridge University Press, 129–234. {pdf} Solomon, S., J. S. Daniel, T. J. Sanford, D. M. Murphy, G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2010: Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. U.S.A., 107 (43), 18 354–18 359, 10.1073/pnas.1006282107. {pdf} |
14:05–15:00 | Inez Fung, Modeling the global carbon cycle Overview of coupled carbon cycle modeling. |
15:00–15:20 | Mark Moore, Peter Buss, Computing setup |
15:20–15:40 | Break |
15:40–16:35 | Keith Lindsay, Tools for analyzing climate model output I |
16:35–17:30 | Group, Introduction to projects |
Tuesday 30 July (ML, Fleischmann Bldg)
08:30–09:25 | Susan Solomon, Cumulative emissions and the long tail of carbon removal This lecture will focus on the time scale for removal of carbon, cumulative carbon, and links to global temperature and other climate changes. Suggested reading: Archer, D., et al., 2009: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annual Review of Earth and Planetary Sciences, 37, 117–134, 10.1146/annurev.earth.031208.100206. {pdf} Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U.S.A., 106 (6), 1704–1709, 10.1073/pnas.0812721106. {pdf} |
09:25–10:20 | Gordon Bonan, Characterization of the terrestrial environment Terrestrial ecosystems influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. This lecture reviews those processes, provides a historical overview of how terrestrial ecosystems are represented in climate models, and presents key case studies of ecosystem-climate coupling. Suggested reading: Bonan, G. B., 2008: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444–1449, 10.1126/science.1155121. {pdf} |
10:20–10:40 | Break |
10:40–11:35 | Gordon Bonan, Modeling Terrestrial ecosystems: Biogeophysics/canopy processes This lecture reviews the biogeophysical processes that regulate ecosystem-climate coupling and how these processes are parameterized in the land surface component of climate models. Suggested reading: Lawrence, D. M., et al., 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, 45, 10.1029/2011MS000045. {pdf} |
11:35–12:30 | Ying-Ping Wang, Global nitrogen and phosphorus cycles The current state of global nutrient cycling models, particularly in relation to carbon-climate feedback. Suggested reading: Aerts, R. and F. Chapin, III, 1999: The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Academic Press, Advances in Ecological Research, Vol. 30, 1–67, 10.1016/S0065-2504(08)60016-1. {pdf} Filippelli, G. M., 2008: The global phosphorus cycle: Past, present, and future. Elements, 4 (2), 89–95, 10.2113/GSELEMENTS.4.2.89. {pdf} Gruber, N. and J. N. Galloway, 2008: An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296, 10.1038/nature06592.{pdf} Manzoni, S. and A. Porporato, 2009: Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology and Biochemistry, 41 (7), 1355–1379, 10.1016/j.soilbio.2009.02.031. {pdf} Parton, W. J., et al., 1993: Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles, 7, 785–809, 10.1029/93GB02042. {pdf} Wang, Y.-P. and B. Z. Houlton, 2009: Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophy. Res. Lett., 36, L24403, 10.1029/2009GL041009. {pdf} Wang, Y. P., R. M. Law, and B. Pak, 2010: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7 (7), 2261–2282, 10.5194/bg-7-2261-2010. {pdf} |
12:30–13:30 | Lunch |
13:30–14:25 | David Schimel, Modeling Terrestrial ecosystems: Biogeochemistry/feedbacks Carbon biogeochemistry of terrestrial ecosystems. Suggested reading: Schimel, D. S., B. H. Braswell, and W. J. Parton, 1997: Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc. Natl. Acad. Sci. U.S.A., 94 (16), 8280–8283. {pdf} Schimel, D., et al., 2000: Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science, 287, 2004–2006, 10.1126/science.287.5460.2004. {pdf} Weng, E., Y. Luo, W. Wang, H. Wang, D. J. Hayes, A. D. McGuire, A. Hastings, and D. S. Schimel, 2012: Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research (Biogeosciences), 117, G03014, 10.1029/2012JG002040. {pdf} |
14:25–14:45 | Break |
14:45–16:00 | Keith Lindsay, Tools for analyzing climate model output II |
16:00–17:30 | Projects |
Wednesday 31 July (ML, Fleischmann Bldg)
08:30–09:25 | Matthew Long, Ocean carbon biogeochemistry: thermodynamics, carbon chemistry, gas exchange An introduction to the inorganic carbon cycle in the ocean, with a focus on gas exchange and the principles of inorganic carbon chemistry. Suggested reading: Sarmiento, J. and N. Gruber, 2006: Ocean biogeochemical dynamics, chap. 8, 526. Princeton University Press. {pdf} Takahashi, T., et al., 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res., Part II, 56 (8-10), 554–577, 10.1016/j.dsr2.2008.12.009. {pdf} |
09:25–10:20 | Inez Fung, Conceptualizing and quantifying climate-carbon feedback |
10:20–10:40 | Break |
10:40–12:10 | Fung/Schimel/Doney/Long, Hands-on session: Coupled carbon-climate system Using a simplified coupled climate-carbon cycle model, develop intuition about critical feedbacks operate and control the behavior of natural carbon sinks. |
12:10–13:10 | Lunch |
13:10–14:30 | Fung/Schimel/Doney/Long, Hands-on session: Coupled carbon-climate system |
14:30–14:45 | Break |
14:45–15:40 | Galen McKinley, Ocean carbon biogeochemistry: Productivity, export, remineralization An introduction to the processes driving the biological pump of carbon in the ocean. These include surface ocean productivity by phytoplankton, removal of carbon to the deep ocean by biomass sinking ('export'), and the heterotrophic respiration of material back to inorganic form ('remineralization'). Suggested reading: Williams, R. G. and M. J. Follows, 2011: Ocean dynamics and the carbon cycle: principles and mechanisms, Chap. 5. Cambridge University Press. {pdf} Sigman, D. M. and M. P. Hain, 2012: The biological productivity of the ocean: Section 1. Nature Education Knowledge, 3 (10), 21. {link} |
15:40–16:35 | Scott Doney, Marine ecosystem modeling I Suggested reading: Doney, S. C., 1999: Major challenges confronting marine biogeochemical modeling. Global Biogeochem. Cycles, 13 (3), 705–714, 10.1029/1999GB900039. {pdf} Rothstein, L., et al., 2006: Modeling ocean ecosystems: The PARADIGM program. Oceanography, 19 (1), 22–51, 10.5670/oceanog.2006.89. {pdf} Gruber, N. and S. Doney, 2009: Ocean biogeochemistry and ecology, modeling of. Encyclopedia of Ocean Sciences (Second Edition), J. H. Steele, K. K. Turekian, and S. A. Thorpe, Eds., Academic Press, Oxford, 89–104, 10.1016/B978-012374473-9.00741-4. {pdf} |
16:35–17:30 | Ben Houlton, Fundamentals of nutrient limitation: consilience of plant ecophysiology and ecosystem science Exploration of nutrient limitation, role of nitrogen and phosphorus, ecosystem theories and plant resource economics. Suggested reading: Bloom, A. J., F. S. Chapin, and H. A. Mooney, 1985: Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 16 (1), 363–392, 10.1146/annurev.es.16.110185.002051. {pdf} Elser, J. J., et al., 2007: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10 (12), 1135–1142, 10.1111/j.1461-0248.2007.01113.x. {pdf} Vitousek, P. M., S. Porder, B. Z. Houlton, and O. A. Chadwick, 2010: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20 (1), 5–15, 10.1890/08-0127.1. {pdf} |
Thursday 1 August (ML, Fleischmann Bldg)
08:30–09:25 | Annalisa Bracco, Global overturning circulation This lecture will introduce the principles governing the large-scale overturning circulation, water mass distributions, and implications for global tracer distributions (anthropogenic CO2, ∆14C, O2, NO3). Furthermore, the wind-driven circulation and vertical velocities governing broad biogeographical patterns affecting biogeochemistry and the biological pump will be introduced. Suggested reading: Di Lorenzo, E., et al., 2009: Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophy. Res. Lett., 36, L14601, 10.1029/2009GL038261. {pdf} Sarmiento, J., N. Gruber, M. Brzezinski, and J. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427 (6969), 56–60, 10.1038/nature02127. {pdf} Williams, R. G. and M. J. Follows, 2003: Chapter 2: Physical Transport of Nutrients and the Maintenance of Biological Production. Ocean Biogeochemistry, M. J. Fasham, Ed., Springer. {pdf} |
09:25–10:20 | Scott Doney, Marine ecosystem modeling II Suggested reading: Le Quere, C., et al., 2005: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 11 (11), 2016-2040, 10.1111/j.1365-2486.2005.01004.x. {pdf} Follows, M. J. and S. Dutkiewicz, 2011: Modeling diverse communities of marine microbes. Annu. Rev. Mar. Sci., 3, 427-451, 10.1146/annurev-marine-120709-142848. {pdf} Siegel, D., et al., 2013: Regional to global assessments of phytoplankton dynamics from the seawifs mission. Remote Sensing of Environment, 135 (0), 77 – 91, doi:10.1016/j.rse.2013.03.025. {pdf} |
10:20–10:40 | Break |
10:40–12:00 | Doney/McKinley, Hands-on session: Modeling marine ecosystems |
12:00–13:00 | Lunch |
13:00–13:55 | Galen McKinley, Climate interactions and feedback in the ocean carbon cycle The impacts of physical climate variability and change on the ocean carbon cycle, as presently understood, are reviewed. Mechanisms of particular interest include (1) surface ocean warming, (2) change in Southern Ocean ventilation, and (3) change in productivity due to enhanced nutrient limitation with enhanced ocean stratification. Modeled mechanisms are evaluated against the observed record. Suggested reading: Lovenduski, N., N. Gruber, and S. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, 10.1029/2007GB003139. {pdf} Lozier, M. S., A. C. Dave, J. B. Palter, L. M. Gerber, and R. T. Barber, 2011: On the relationship between stratication and primary productivity in the North Atlantic. Geophy. Res. Lett., 38, L18609, 10.1029/2011GL049414. {pdf} McKinley, G. A., A. R. Fay, T. Takahashi, and N. Metzl, 2011: Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nature Geosci, 4 (9), 606-610, 10.1038/ngeo1193. {pdf} Sarmiento, J. and C. Le Quere, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274 (5291), 1346-1350, 10.1126/science.274.5291.1346. {pdf} |
13:55–14:50 | Ben Houlton, Frontiers in global nutrient cycles: questions, opportunities and techniques This lecture will explore the cutting edge of nutrient-carbon interactions, manly from a global ecosystem perspective. Topics will include the role of nitrogen isotopes in global models; integration of models and space-borne satellite observations in the assessment of new production in the terrestrial biosphere; rocks and the global nitrogen cycle. Suggested reading: Houlton, B. Z. and E. Bai, 2009: Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. U.S.A., 106, 21713-21716, 10.1073/pnas.0912111106. {pdf} Morford, S. L., B. Z. Houlton, and R. A. Dahlgren, 2011: Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature, 477, 78-81, 10.1038/nature10415. {pdf} Cleveland, C. C., B. Z. Houlton, W. K. Smith, A. R. Marklein, S. C. Reed, W. Parton, S. J. Del Grosso, and S. W. Running, 2013: Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.1302768110. {pdf} |
14:50-15:10 | Break |
15:10-17:30 | Open project time |
Friday 2 August (ML, Fleischmann Bldg)
8:30-9:25 | Annalisa Bracco, Upper ocean physics This lecture will examine the physical processes regulating the characteristics of the upper ocean environment, including small-scale turbulence, as well as mesoscale and submesoscale dynamics. Particular focus will be on the impact these processes have on biogeochemistry. Suggested reading: Belcher, S. E., et al., 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophy. Res. Lett., 39, L18605, 10.1029/2012GL052932. {pdf} L ́evy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Rivi`ere, 2012: Bringing physics to life at the submesoscale. Geophy. Res. Lett., 39, L14602, 10.1029/2012GL052756. {pdf} Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms. Science, 337, 54–58, 10.1126/science.1218740. {pdf} Zhong, Y. and A. Bracco, 2013: Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res., submitted. {pdf} |
09:25–10:20 | Scott Doney, Phytoplankton ecology Suggested reading: Boyd, P. W. and S. C. Doney, 2002: Modelling regional responses by marine pelagic ecosystems to global climate change. Geophy. Res. Lett., 29, 1806, 10.1029/2001GL014130. {pdf} Doney, S. C., et al., 2012: Climate change impacts on marine ecosystems. Ann. Rev. of Mar. Sci., 4 (1), 10.1146/annurev-marine-041911-111611. {pdf} Chavez, F. P., M. Messi ́e, and J. T. Pennington, 2011: Marine Primary Production in Relation to Climate Variability and Change. Ann. Rev. of Mar. Sci., 3, 227–260, 10.1146/annurev.marine.010908.163917. {pdf} Behrenfeld, M. J., S. C. Doney, I. Lima, E. S. Boss, and D. A. Siegel, 2013: Annual cycles of ecological disturbance and recovery underlying the subarctic atlantic spring plankton bloom. Global Biogeochemical Cycles, n/a–n/a, 10.1002/gbc.20050. {pdf} |
10:20-10:40 | Break |
10:40-11:35 | Inez Fung, Inferring fluxes from atmospheric observations |
11:35-12:30 | David Schimel, FluxNet data and scaling Suggested reading: Churkina, G., D. Schimel, B. H. Braswell, and X. Xiao, 2005: Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11 (10), 1777–1787, 10.1111/j.1365-2486.2005.001012.x. {pdf} Desai, A. R., et al., 2011: Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements. Journal of Geophysical Research (Biogeosciences), 116, G04009, 10.1029/2011JG001655. {pdf} Goulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube, and S. C. Wofsy, 1996: Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability. Science, 271, 1576–1578, doi:10.1126/science.271.5255.1576. {pdf} Sacks, W. J., D. S. Schimel, R. K. Monson, and B. H. Braswell, 2006: Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology, 12 (2), 240–259, 10.1111/j.1365-2486.2005.01059.x. {pdf} Verma, S. B., J. Kim, and R. J. Clement, 1992: Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE. J. Geophys. Res, 97, 18 629, doi:10.1029/91JD03045. {pdf} Xiao, J., et al., 2011: Assessing net ecosystem carbon exchange of u.s. terrestrial ecosystems by integrat- ing eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 151 (1), 60 – 69, doi:http://dx.doi.org/10.1016/j.agrformet.2010.09.002. {pdf} Yi, C., et al., 2010: Climate control of terrestrial carbon exchange across biomes and continents. Envi- ronmental Research Letters, 5 (3), 034007, doi:10.1088/1748-9326/5/3/034007. {pdf} |
12:30-13:30 | Lunch |
13:30-14:30 | Schimel/Fung/Stephens/Chatterjee, Hands-on session: Flux constraints |
14:30-15:00 | Break |
15:00-17:00 | Schimel/Fung/Stephens/Chatterjee, Hands-on session: Flux constraints |